Networks and Distributed Systems	Homework 4: Routing
CS3700 Fall 2017	October 5, 2017

CS3700 Fall 2017 October 5, 2017

This homework is due at the beginning of class on October 10, 2017 and is worth 1.5% of your grade.

Name: \qquad

CCIS Username: \qquad

Problem	Possible	Score
1	10	
2	25	
3	30	
Total	65	

1. Suppose an IP router has the following initial routing table entries:

\#	Address	Subnet Mask	Next Hop
1	129.10 .112 .0	255.255 .255 .0	R1
2	129.10 .80 .0	255.255 .255 .0	R1
3	129.10 .0 .0	255.255 .0 .0	R2
4	129.10 .62 .0	255.255 .255 .0	R4
5	129.10 .63 .0	255.255 .255 .0	R4
6	129.10 .64 .0	255.255 .192 .0	R3
7	129.10 .65 .0	255.255 .255 .0	R4
8	129.10 .66 .0	255.255 .255 .0	R4

What are the next hops that are used if the router is asked to forward a packet to (a) 129.10.7.3, (b) 129.10.97.4, (c) 129.10.80.2, and (d) 129.11.112.4?
(10 pts)
2. Consider the networking of routers shown below, with the "link weight" for each link written next to the link:

2a. Use Dijkstra's shortest-path algorithm to compute the shortest path from A to all other routers. Show how the algorithm works by filling out the table on the final page, showing both the current cost to each destination $(D(X))$ and the corresponding shortest path $(p(X))$.

2b. Name one way in which distance vector routing is better than link state routing.

2c. Name one in which link state routing is better than distance vector routing.
3. Consider the network shown in the following figure. Assume that if a customer has an equally good choice of providers to send outbound traffic through, the customer will pick the provider with the lowest AS number. Assume the nodes evaluate path choices using the shortest hop count metric.

3a. What path would host F take to reach host B ? Justify your answer.
(10 pts)

3b. What path would host E take to reach host G ? Justify your answer.
(10 pts)

3c. All traffic between AS5 and AS8 must transit through AS7. Suppose AS5 and AS8 want to avoid paying $A S 7$ for this service. What could they do to reduce their cost?
(10 pts)

Step	N^{\prime}	$\mathrm{D}(\mathrm{B}), \mathrm{p}(\mathrm{B})$	$\mathrm{D}(\mathrm{C}), \mathrm{p}(\mathrm{C})$	$\mathrm{D}(\mathrm{D}), \mathrm{p}(\mathrm{D})$	$\mathrm{D}(\mathrm{E}), \mathrm{p}(\mathrm{E})$	$\mathrm{D}(\mathrm{F}), \mathrm{p}(\mathrm{F})$	$\mathrm{D}(\mathrm{G}), \mathrm{p}(\mathrm{G})$	$\mathrm{D}(\mathrm{H}), \mathrm{p}(\mathrm{H})$
1	A							
2								
3								
4								
5								
6								
7								
8								

