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Abstract
It is well known that apps running on mobile devices extensively
track and leak users’ personally identifiable information (PII);
however, these users have little visibility into PII leaked through the
network traffic generated by their devices, and have poor control
over how, when and where that traffic is sent and handled by third
parties. In this paper, we present the design, implementation, and
evaluation of ReCon: a cross-platform system that reveals PII leaks
and gives users control over them without requiring any special
privileges or custom OSes. ReCon leverages machine learning
to reveal potential PII leaks by inspecting network traffic, and
provides a visualization tool to empower users with the ability
to control these leaks via blocking or substitution of PII. We
evaluate ReCon’s effectiveness with measurements from controlled
experiments using leaks from the 100 most popular iOS, Android,
and Windows Phone apps, and via an IRB-approved user study with
92 participants. We show that ReCon is accurate, efficient, and
identifies a wider range of PII than previous approaches.

1. INTRODUCTION
There has been a dramatic shift toward using mobile devices

such as smartphones and tablets as the primary interface to access
Internet services. Unlike their fixed-line counterparts, these devices
also offer ubiquitous mobile connectivity and are equipped with a
wide array of sensors (e.g., GPS, camera, and microphone).

This combination of rich sensors and ubiquitous connectivity
makes these devices perfect candidates for privacy invasion.
Apps extensively track users and leak their personally identifiable
information (PII) [17, 23, 27, 35, 58], and users are generally
unaware and unable to stop them [21, 29]. Cases of PII leaks
dramatically increased from 13.45% of apps in 2010 to 49.78%
of apps in 2014, and the vast majority of these leaks occur over IP
networks (less than 1% of apps leak data over SMS) [44].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’16, June 25–30, 2016, Singapore.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906392

Previous attempts to address PII leaks face challenges of a lack
of visibility into network traffic generated by mobile devices and
the inability to control the traffic. Passively gathered datasets
from large mobile ISPs [58, 60] provide visibility but give users no
control over network flows. Likewise, custom Android extensions
that are often integrated in dynamic analysis tools provide control
over network flows but measurement visibility is limited to the
devices running these custom OSes or apps [24], often requiring
warranty-voiding “jailbreaking.” Static analysis tools can identify
PII leaks based on the content of the code implementing an app, but
suffer from imprecision and cannot defend against dynamic code
loading at run time.

We argue that improving mobile privacy requires (1) trusted third-
party systems that enable auditing and control over PII leaks, and
(2) a way for such auditors to identify PII leaks. Our key observation
is that a PII leak must (by definition) occur over the network, so
interposing on network traffic is a naturally platform-independent
way to detect and mitigate PII leaks. Based on this insight, we
propose a simpler, more effective strategy than previous approaches:
interposing on network traffic to improve visibility and control for
PII leaks.

Using this approach, we focus on the problem of identifying
and mitigating PII leaks at the network level. We describe the
design and implementation of a system to address this problem
called ReCon, which detects PII leaks from network flows alone,
presents this information to users, and allows users fine-grained
control over which information is sent to third parties. We use
machine learning and crowdsourcing-based reinforcement to build
classifiers that reliably detect PII in network flows, even when we
do not know a priori what information is leaked and in what format.
To address flows using SSL or obfuscation, we describe techniques
that allow our system to detect PII leaks in encrypted flows with
user opt in, and adapt to obfuscation.1

By operating on network traffic alone, ReCon can be deployed
in mobile networks [4], in home networks, in the cloud, or on
mobile devices. ReCon is currently deployed using VPN tunnels to
software middleboxes running on popular cloud platforms, because
this allows us to immediately deploy to arbitrary mobile device
OSes and ISPs.

Our key contributions are as follows:

1We support SSL decryption for controlled experiments and private
ReCon instances, but disable them in user studies for privacy
reasons.
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• A study using controlled experiments to demonstrate how
PII leaks from iOS, Android, and Windows Phone devices,
motivating the need for (and potential effectiveness of) systems
that identify PII leaks from network flows. We find extensive
leaks of device identifiers (> 50% of the top 100 apps from
all 3 OSes), user identifiers (> 14% of top 100 Android/iOS
apps), locations (14-26% of top 100 Android/iOS apps) and
even passwords (3 apps) in plaintext traffic.

• An approach for the detection and extraction of PII leaks from
arbitrary network flows, using machine learning informed by
extensive ground truth for more than 72,000 flows generated by
mobile apps.

• A system that enables users to view PII leaks from network
flows, provide feedback about relevant leaks, and optionally
modify leaks.

• An evaluation of our system, showing it is efficient
(classification can be done in less than one ms), and that it
accurately identifies leaks (with 98.1% accuracy for the vast
majority of flows in our dataset). We show that a simple
C4.5 Decision Tree (DT) classifier is able to identify PII leaks
with accuracy comparable to several ensemble methods atop
DTs (AdaBoost, Bagging, and Blending) that take significantly
more processing time (by a factor of 7.24).

• A comparison with three alternative techniques for detecting
PII leaks using information flow analysis. We show that overall
ReCon finds more PII leaks than all three approaches. Further,
ReCon can leverage information flow analysis techniques to
improve its coverage, as we demonstrate in §5.3.

• A characterization of our approach on traffic generated by user
devices as part of an IRB-approved user study. We demonstrate
that our approach successfully identifies PII leaks (with users
providing 5,351 labels for PII leaks) and characterize how
these users’ PII is leaked “in the wild.” For example, we find
previously unreported sensitive information such as usernames
and passwords (21 apps) being leaked in plaintext flows.

In the next section, we motivate our work using the results of
controlled experiments identifying extensive information leakage
in popular apps. We then describe the design (§3) and
implementation (§4) of ReCon. We validate our design choices
using controlled experiments in §5 and in §6 we show their
relevance “in the wild” with a deployment of ReCon using an IRB-
approved study with 92 participants. We discuss related work in §7
and conclude in §8.
The code and data from our controlled experiments are open-source
and publicly available at:

http://recon.meddle.mobi/codeanddata.html

2. MOTIVATION AND CHALLENGES
In this section, we use controlled experiments to measure PII

leakage with ground-truth information. We find a surprisingly
large volume of PII leaks from popular apps from four app stores,
particularly in plaintext (unencrypted) flows. Based on these
results, we identify several core challenges for detecting PII leaks
when we do not have ground-truth information, i.e., for network
traffic generated by arbitrary users’ devices. In the next section,
we describe how to automatically infer PII leaks in network flows
when the contents of PII is not known in advance.

2.1 Definition of PII
Personally identifiable information (PII) is a generic term

referring to “information which can be used to distinguish or

trace an individual’s identity” [38]. These can include geographic
locations, unique identifiers, phone numbers and other similar data.

Central to this work is identifying PII leaked by apps over the
network. In this paper, we define PII to be either (1) Device
Identifiers specific to a device or OS installation (ICCID, IMEI,
IMSI, MAC address, Android ID, Android Advertiser ID, iOS
IFA ID, Windows Phone Device ID), (2) User Identifiers, which
identify the user (name, gender, date of birth, e-mail address,
mailing address, relationship status), (3) Contact Information
(phone numbers, address book information), (4) Location (GPS
latitude and longitude, zip code), or (5) Credentials (username,
password). This list of PII is informed by information leaks
observed in this study. While this list is not exhaustive, we believe
it covers most of the PII that concerns users. We will update the list
of tracked PII as we learn of additional types of PII leaks.

2.2 Threat Model
To improve user privacy, we should inform users of any PII that

is exposed to eavesdroppers over insecure connections, and any
unnecessary PII exposed to other parties over secure (i.e., encrypted)
connections. Determining what information is necessary to share
remains an open problem that we do not solve in this work, so we
consider the upper bound of all PII transmitted to other parties.

Specifically, we define a “leak” as any PII, as described in Section
§2.1, that is sent over the network from a device to a first or third
party over both secure (i.e., HTTPS) and insecure (i.e., HTTP)
channels. We further define the following two threat scenarios:
Data-exfiltrating apps. In this scenario, the app developers either
directly, or indirectly via advertising and analytics libraries, collect
PII from the users’ mobile devices, beyond what would be required
for the main functionality of the apps. In this work, we do not
establish whether a PII leak is required for app functionality; rather,
we make all leaks transparent to users so they can decide whether
any individual leak is acceptable.
Eavesdropping on network traffic. Here, the adversary learns
PII about a user by listening to network traffic that is exposed
in plaintext (e.g., at an unencrypted wireless access point, or by
tapping on wired network traffic). Sensitive information, such
as passwords, are sent over insecure channels, leaving the users
vulnerable to eavesdropping by this adversary.

ReCon addresses both scenarios by automatically detecting PII
leaks in network flows, presenting the detected leaks to users and
allowing them to modify or block leaks. Clearly, some information
should never be sent over insecure channels. Thus, whenever ReCon
detects a security critical leak, such as a password being sent over
HTTP, we follow a responsible disclosure procedure and notify the
developer.

2.3 Controlled Experiments for Ground Truth
Our goal with controlled experiments is to obtain ground-truth

information about network flows generated by apps and devices.
We use this data to identify PII in network flows and to evaluate
ReCon (§5).
Experiment setup. We conduct controlled experiments using
Android devices (running Android 5.1.1), an iPhone (running iOS
8.4.1) and a Windows Phone (running Windows 8.10.14226.359).
We start each set of experiments with a factory reset of the
device followed by connecting the device to Meddle [49]. Meddle
provides visibility into network traffic through redirection, i.e.,
sending all device traffic to a proxy server using native support
for virtual private network (VPN) tunnels. Once traffic arrives at
the proxy server, we use software middleboxes to intercept and
modify the traffic. We additionally use SSLsplit [9] to decrypt and

362



inspect SSL flows only during our controlled experiments where
no human subject traffic is intercepted. Our dataset and the full
details of our experiments are available on our project page at
http://recon.meddle.mobi/codeanddata.html.
Manual tests. We manually test the 100 most popular free apps
for Android, iOS, and Windows Phone from the Google Play store,
the iOS App Store, and the Windows Phone Store on August 9,
2015 as reported by App Annie [2]. For each app, we install
it, interact with it for up to 5 minutes, and uninstall it. We give
apps permission to access to all requested resources (e.g., contacts
or location). This allows us to characterize real user interactions
with popular apps in a controlled environment. We enter unique
and distinguishable user credentials when interacting with apps to
easily extract the corresponding PII from network flows (if they are
not obfuscated). Specific inputs, such as valid login credentials,
e-mail addresses and names, are hard to generate with automated
tools [20]. Consequently, our manual tests allow us to study app
behavior and leaks of PII not covered by our automated tests.
Automated tests. We include fully-automated tests on the 100
Android apps used in the manual tests and also 850 of the top
1,000 Android apps from the free, third-party Android market
AppsApk.com [3] that were successfully downloaded and installed
on an Android device.2 We perform this test to understand how
third-party apps differ from those in the standard Google Play
store, as they are not subject to Google Play’s restrictions and
vetting process (but can still be installed by users without rooting
their phones). We automate experiments using adb to install each
app, connect the device to the Meddle platform, start the app,
perform approximately 10,000 actions using Monkey [11], and
finally uninstall the app and reboot the device to end any lingering
connections. We limit the automated tests to Android devices
because iOS and Windows do not provide equivalent scripting
functionality.
Analysis. We use tcpdump [10] to dump raw IP traffic and bro [5]
to extract the HTTP flows that we consider in this study, then we
search for the conspicuous PII that we loaded onto devices and
used as input to text fields. We classify some of the destinations of
PII leaks as trackers using a publicly available database of tracker
domains [1], and recent research on mobile ads [22, 34, 43].

2.4 PII Leaked from Popular Apps
We use the traffic traces from our controlled experiments to

identify how apps leak PII over HTTP and HTTPS. For our analysis
we focus on the PII listed in §2.1. Some of this information may be
required for normal app operation; however, sensitive information
such as credentials should never travel across the network in
plaintext.

Table 1 presents PII leaked by iOS, Android and Windows
apps in plaintext. Device identifiers, which can be used to track
user’s behavior, are the PII leaked most frequently by popular
apps. Table 1 shows that other PII—user identifiers, contacts,
location, and credentials such as username and password—are
also leaked in plaintext. Importantly, our manual tests identify
important PII not found by automated tests (e.g.,, Monkey) such
as user identifiers and credentials. Thus, previous studies based
on automation underestimate leakage and are insufficient for good
coverage of PII leaks.
Cross-platform app behavior. We observed that the information
leaked by an app varied across OSes. Of the top 100 apps for
Android, 16 apps are available on all the three OSes. Of these
16 apps, 11 apps leaked PII in plaintext on at least one OS: 2
214 apps appear both in the AppsApk and Google Play stores, but
AppsApk hosts significantly older versions.

apps leaked PII on all the three OSes, 5 apps leaked PII in exactly
one OS, and the remaining 4 apps leaked PII in 2 of the OSes. A
key take-away is that PII analysis based only on one OS does not
generalize to all OSes.
Leaks over SSL. During our experiments, we observed that PII is
also sent over encrypted channels. In many cases, this is normal
app behavior (e.g., sending credentials when logging in to a site,
or sending GPS data to a navigation app). However, when such
information leaks to third parties, there is a potential PII leak. We
focus on the PII leaked to tracker domains [1], and find that 6 iOS
apps, 2 Android apps and 1 Windows app send PII to trackers over
SSL. The vast majority of this information is device identifiers,
with three cases of username leaks. While SSL traffic contains a
minority of PII leaks, there is clearly still a need to address leaks
from encrypted flows.

Our observations are a conservative estimate of PII leakage
because we did not attempt to detect obfuscated PII leaks (e.g.,
via salted hashing), and several apps used certificate pinning (10
iOS, 15 Android, and 7 Windows apps) or did not work with VPNs
enabled (4 iOS apps and 1 Android app).3 Our results in §5.3
indicate that obfuscation is rare today, and our results above show
that significant PII leaks are indeed visible in plaintext.

2.5 Summary and Challenges
While the study above trivially revealed significant PII leaks from

popular mobile apps, several key challenges remain for detecting
PII leaks more broadly.
Detection without knowing PII. A key challenge is how to detect
PII when we do not know the contents of PII in advance. One
strawman solution is to simply block all advertising and tracking
sites. However, this is a blunt and indiscriminate approach that
can disrupt business models supporting free apps. In fact, the
developers of the top paid iOS app Peace (which blocks all ads)
recently withdrew their app from the App Store for this reason [40].

Another strawman solution is to automatically (and/or
symbolically) run every app in every app store to determine
when PII is leaked. This allows us to formulate a regular
expression to identify PII leaks from every app regardless of the
user: we simply replace the PII with a wildcard.

There are several reasons why this is insufficient to identify PII
leaks for arbitrary user flows. First, it is impractically expensive to
run this automation for all apps in every app store, and there are no
publicly available tools for doing this outside of Android. Second,
it is difficult (if not impossible) to use automation to explore
every possible code path that would result in PII leaks, meaning
this approach would miss significant PII. Third, this approach is
incredibly brittle – if a tracker changes the contents of flows leaking
PII at all, the regular expression would fail.

These issues suggest an alternative approach to identifying PII in
network flows: use machine learning to build a model of PII leaks
that accurately identifies them for arbitrary users. This would allow
us to use a small set of training flows, combined with user feedback
about suspected PII leaks, to inform the identification of a PII leaks
for a large number of apps.
Encoding and formatting. PII leaked over the network can be
encoded using Unicode and other techniques like gzip, JSON, and
XML, so a technique to identify PII in network flows must support a
variety of formats. In our experience, it is relatively straightforward
to extract the encoding for a flow and search for PII using this
encoding. We support the encodings mentioned above, and will
add support for others as we encounter them.

3For more details, please see our tech report [52].
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# Apps leaking a given PII
Testing # of Device User Contact

OS Store Technique Apps Identifier Identifier Information Location Credentials
iOS App Store Manual 100 47 (47.0%) 14 (14.0%) 2 (2.0%) 26 (26.0%) 8 (8.0%)
Android Google Play Manual 100 52 (52.0%) 15 (15.0%) 1 (1.0%) 14 (14.0%) 7 (7.0%)
Windows WP Store Manual 100 55 (55.0%) 3 (3.0%) 0 (0.0%) 8 (8.0%) 1 (1.0%)
Android AppsApk Automated 850 155 (18.2%) 6 (0.7%) 8 (0.9%) 40 (4.7%) 0 (0.0%)
Android Google Play Automated 100 52 (52.0%) 0 (0.0%) 0 (0.0%) 6 (6.0%) 0 (0.0%)

Table 1: Summary of PII leaked in plaintext (HTTP) by iOS, Android and Windows Phone apps. User identifiers and credentials are
leaked across all platforms. Popular iOS apps leak location information more often than the popular Android and Windows apps.

Encryption. Flows in the mobile environment increasingly use
encryption (often via SSL). Sandvine reports that in 2014 in North
American mobile traffic, approximately 12.5% of upstream bytes
use SSL, up from 9.78% the previous year [54]. By comparison,
11.8% of bytes came from HTTP in 2014, down from 14.66% the
previous year. A key challenge is how to detect PII leaks in such
encrypted flows. ReCon identifies PII leaks in plaintext network
traffic, so it would require access to the original plaintext content
to work. While getting such access is a challenge orthogonal to
this work, we argue that this is feasible for a wide range of traffic
if users run an SSL proxy on a trusted computer (e.g., the user’s
home appliance, such as a computer or home gateway) or use recent
techniques for mediated access to encrypted traffic [48, 55].
Obfuscation of PII. The parties leaking PII may use obfuscation
to hide their information leaks. In our experiments, we found little
evidence of this (§ 5.3). In the future, we anticipate combining our
approach with static and dynamic analysis techniques to identify
how information is being obfuscated, and adjust our system to
identify the obfuscated PII. For example, using information flow
analysis, we can reverse-engineer how obfuscation is done (e.g.,
for salted hashing, learn the salt and hash function), then use this
information when analyzing network traces to identify leaked PII.
In the ensuing cat-and-mouse game, we envision automating this
process of reverse engineering obfuscation.

3. RECON GOALS AND DESIGN
The previous section shows that current OSes do not provide

sufficient visibility into PII leaks, provide few options to control
it, and thus significant amounts of potentially sensitive information
is exfiltrated from user devices. To address this, we built ReCon,
a tool that detects PII leaks, visualizes how users’ information is
shared with various sites, and allows users to change the shared
information (including modifying PII or even blocking connections
entirely).

The high-level goal of our work is to explore the extent to which
we can address privacy issues in mobile systems at the network
level. The sub-goals of ReCon are as follows:
• Accurately identify PII in network flows, without requiring the

knowledge of users’ PII a priori.
• Improve awareness of PII leaks by presenting this information

to users.
• Automatically improve the classification of sensitive PII based

on user feedback.
• Enable users to change these flows by modifying or removing

PII.
To achieve the first three goals, we determine what PII is leaked

in network flows using network trace analysis, machine learning,
and user feedback. We achieve the last goal by providing users with
an interface to block or modify the PII shared over the network.

This paper focuses on how to address the research challenges in
detecting and revealing PII leaks; as part of ongoing work outside
the scope of this paper, we are investigating other UIs for modifying
PII leaks, how to use crowdsourcing to help design PII-modifying
rules, and how we can use ReCon to provide other types of privacy
(e.g., k-anonymity).

Figure 1 presents the architecture of the ReCon system. In the
“offline” phase, we use labeled network traces to determine which
features of network flows to use for learning when PII is being
leaked, then train a classifier using this data, finally producing a
model for predicting whether PII is leaked. When new network
flows enter ReCon (the “online” phase), we use the model to
determine whether a flow is leaking PII and present the suspected
PII leak to the user via the ReCon Web UI (Fig. 2). We currently
detect PII as described in the previous section, and will add other
PII types as we discover them. Note that our approach can detect
any PII that appears in network traffic as long as we obtain labeled
examples.

We collect labels from users (i.e., whether our suspected PII is
correct) via the UI and integrate the results into our classifier to
improve future predictions (left). In addition, ReCon supports a
map view, where we display the location information that each
domain is learning about the user (right). By using a Web interface,
ReCon users can gain visibility and control into their PII leaks
without installing an app. A demo of ReCon is available at
http://recon.meddle.mobi/DTL-ReconDemo.mp4.

To support control of PII, ReCon allows users to tell the system
to replace PII with other text (or nothing) for future flows (see
the drop-down boxes in Fig. 2(a)). Users can specify blocking or
replacement of PII based on category, domain, or app. This protects
users’ PII for future network activity, but does not entirely prevent
PII from leaking in the first place. To address this, we support
interactive PII labeling and filtering, using push notifications4 or
other channels to notify the user of leaks immediately when they
are detected (as done in a related study [15]).

3.1 Non-Goals
ReCon is not intended as a blanket replacement for existing

approaches to improve privacy in the mobile environment. For
example, information flow analysis [24] may identify PII leaks not
revealed by ReCon. In fact, ReCon can leverage information flow
analysis techniques to improve its coverage, as we demonstrate
in §5.3. Importantly, ReCon allows us to identify and block
unobfuscated PII in network flows from arbitrary devices without
requiring OS modifications or taint tracking.

The need for access to plaintext traffic is an inherent limitation of
our approach. We discussed several ways to address encryption and
obfuscation of PII in the previous section. If these should fail, we

4Push notifications require a companion app, and we currently
support Android (we plan to release iOS and Windows versions
soon).
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Continuous training with user feedback

Training

Model Prediction User 
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and
train a model using labeled network flows (top), then use this model
to predict whether new network flows are leaking PII. Based on
user feedback, we retrain our classifier (bottom). Periodically, we
update our classifier with results from new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks

Figure 2: Screen capture of the ReCon user interface. Users can
view how their PII is leaked, validate the suspected PII leaks, and
create custom filters to block or modify leaks.

can recover plaintext traffic with OS support for access to network
traffic content as it appears before encryption or obfuscation. Of
course, getting such support from an OS could be challenging.
Alternatively, policymakers such as the FTC could intervene by
barring developers from using techniques that explicitly eschew
auditing tools such as ReCon, by citing it as a type of “deceptive
business practice” currently disallowed in the US.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to identify

and modify PII leaks, it admits a variety of deployment models,
e.g.,, in the cloud, in home devices, inside an ISP, or on mobile
devices. We are currently hosting this service on Meddle in a cloud-
based deployment because it provides immediate cross-platform
support with low overheads [49]. We are also in discussions with

Telefonica to deploy ReCon on their Awazza [4] APN proxy, which
has attracted thousands of users.

3.3 Protecting User Privacy
An important concern with a ReCon user study is privacy.

Using an IRB-approved protocol [8], we encrypt and anonymize
all captured flows before storing them. We have two deployment
models: the first study (approval #13-08-04) captures all of a
subject’s Internet traffic and entails in-person, signed informed
consent; the second study (approval #13-11-17) captures only
HTTP GET/POST parameters (where most leaks occur) and users
consent via an online form. The secret key is stored on a separate
secure server and users can delete their data at any time.

We will make the ReCon source code publicly available. For
those who want to run their own ReCon instance (e.g., if they do
not want to participate in our study), our system requires only that
a user has root on a Linux OS. ReCon can be deployed in a single-
machine instance on a home computer, as Raspberry Pi plugged
into a home router, a dedicated server in an enterprise, a VM in
the cloud, or in the device itself. One can also selectively route
traffic to different ReCon instances, e.g.,, to a cloud instance for
HTTP traffic and a trusted home instance or on-device software
such as HayStack [51] to decrypt HTTPS connections to identify
PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We then

evaluate our design decisions in the following section, and finally
demonstrate how they hold up “in the wild” via a user study with 92
participants. Table 2 presents a roadmap for the remainder of the
paper, highlighting key design decisions, evaluation criteria, and
results. The ReCon pipeline begins with parsing network flows,
then passing each flow to a machine learning classifier for labeling
it as containing a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [28] to train classifiers that

predict PII leaks. We train our classifier by extracting relevant
features and providing labels for flows that leak PII as described
below. Our input dataset is the set of labeled flows from our
controlled experiments in §2.3. To evaluate our classifiers, we use
k-fold cross validation, where a random (k − 1)/k of the flows in
our dataset are used to train the classifier, and the remaining 1/k of
the flows are tested for accuracy. This process is repeated n times
to understand the stability of our results (see §5).
Feature extraction. The problem of identifying whether a flow
contains PII is similar to the document classification problem,5

so we use the “bag-of-words” model [32]. We choose certain
characters as separators and consider anything between those
separators to be words. Then for each flow, we produce a vector
of binary values where each word that appears in a flow is set to 1,
and each word that does not is set to 0.

A key challenge for feature extraction in network flows is that
there is no standard token (e.g., whitespace or punctuation) to use
for splitting flows into words. For example, a colon (:) could
be part of a MAC address (e.g., 02:00:00:00:00), a time-of-
day (e.g., 11:59), or JSON data (e.g., username:user007).
Further frustrating attempts to select features, one domain uses
“=>” as a delimiter (in username =>user007). In these cases,
there is no single technique that covers all flows. Instead, we
use a number of different delimiters “,;/(){}[]" to handle

5Here, network flows are documents and structured data are words.
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Section Topic Dataset Key results
4.1 Implementation Controlled exp. Feature extraction and selection, per-domain per-OS classifiers
4.2 " Controlled exp. Automatically identifying PII in flows
5.2 Evaluation: ML techniques Controlled exp. Decision trees provide best trade-off for accuracy/speed, per-domain per-OS classifiers

outperform general ones, feature selection balances accuracy and training time, heuristics
for PII extraction are accurate

5.3 Evaluation: IFA comparison Automated exp. ReCon generally outperforms information flow analysis techniques, and can learn new
association rules from them to further improve accuracy

6 Evaluation: “in the wild” User study ReCon is efficient, users labels confirm accuracy of ReCon even for apps not previously
seen, retraining based on user labels substantially improves accuracy, significant amounts
of sensitive information is leaked in plaintext from popular apps.

Table 2: Roadmap for key topics covered in §4, §5 and §6. We train and test our classifier using 10-fold cross-validation, i.e., a random
9/10 samples for training and the remaining 1/10 for testing; we repeat this process 10 times to tune our parameters.

the common case, and treat ambiguous delimiters by inspecting
the surrounding content to determine the encoding type based on
context (e.g., looking at content-encoding hints in the HTTP header
or whether the content appears in a GET parameter).
Feature selection. A simple bag-of-words model produces too
many features to be useful for training accurate classifiers that
make predictions within milliseconds (to intercept PII leaks in real
time). To reduce the feature set, we assume that low-frequency
words are unlikely to be associated with PII leaks, because when
PII does leak, it rarely leaks just once. On the other hand, session
keys and other ephemeral identifiers tend to appear in exactly one
flow. Based on this intuition, we apply a simple threshold-based
filter that removes a feature if its word frequency is too small.
We select a reasonable threshold value empirically, by balancing
accuracy and classification time for labeled data (discussed in
§5.2.3). To avoid filtering PII leaks that occur rarely in our labeled
data, we oversample rarely occurring PII leaks(so that their number
occurrences is greater than the filter threshold). In addition, we
randomize PII values (e.g.,, locations, device IDs) in each flow
when training to prevent the classifier from using a PII value as
a feature.

While the above filter removes ephemeral identifiers from our
feature set, we must also address the problem of words that
commonly appear. Several important examples include information
typically found in HTTP flows, such as content-length:,
en- us, and expires. We thus add stop-word-based filtering
on HTTP flows, where the stop words are determined by term
frequency—inverse document frequency (tf-idf). We include only
features that have fairly low tf-idf values and that did not appear
adjacent to a PII leak in a flow from our controlled experiments.
Per-domain-and-OS and general classifiers. We find that PII
leaks to the same destination domain use the same (or similar)
data encodings to transfer data over the network, but that this
encoding may differ across different OSes. Based on this
observation, we build per-domain-and-OS models (one classifier
for each [destination domain, OS] pair) instead of one single
general classifier. We identify the domain associated with each
flow based on the Host: parameter in the HTTP header. If this
header is not available, we can also identify the domain associated
with each IP address by finding the corresponding DNS lookup
in packet traces. We identify the OS based on the fact that
different OSes use different authentication mechanisms in our
VPN, and users tell us in advance which OS they are using. This
improves prediction accuracy because the classifier typically needs
to learn a small set of association rules. Further, per-domain-
and-OS classifiers improve performance in terms of lower-latency
predictions (§5.2.3), important for detecting and intercepting PII
leaks in-band.

The above approach works well if there is a sufficiently large
sample of labeled data to train to the per-domain per-OS classifier.
For domains that do not see sufficient traffic, we build a (cross-
domain) general classifier. The general classifier tends to have
few labeled PII leaks, making it susceptible to bias (e.g., 5% of
flows in our general classifier are PII leaks). To address this, we
use undersampling on negative samples, using 1/10 sampling to
randomly choose a subset of available samples.

Note that we do not need to train classifiers on every domain in
the Internet; rather, we train only on domains contacted by users’
traffic. Further, we do not need every user to label every PII leak;
rather, we need only a small number of labeled instances from a
small number of users to identify PII leaks for all users whose
traffic visits those domains.
Adapting to PII leaks “in the wild.” A key challenge for any
ML technique is identifying flows leaking PII that were never
seen in controlled experiments. To mitigate this problem, we
integrate user feedback from flows that we did identify using one
of our classifiers. Specifically, when a user provides feedback
that we have correctly identified PII, we can search for that PII
in historical flows to identify cases ReCon missed due to lack of
sufficient training data. Further, we can use these flows to retrain
our classifier to successfully catch these instances in future network
flows. We discuss the effectiveness of this approach in §6.

Any system that allows user feedback is susceptible to incorrect
labels, e.g., via user error or Sybil attacks. There are two ways to
address this. First, we can simply train per-user classifiers, so any
erroneous labels only affect the user(s) who provide them. Second,
we can train system-wide classifiers if we can reliably distinguish
good labels from bad ones. To this end, we envision using existing
majority-voting algorithms and/or reputation systems [36].

4.2 Automatically Extracting PII
A machine learning classifier indicates whether a flow contains

PII, but does not indicate which content in the flow is a PII
leak. The latter information is critical if we want to present users
with information about their leaks and allow them to validate the
predictions.

A key challenge for extracting PII is that the key/value pairs
used for leaking PII vary across domains and devices; e.g., the key
“device_id” or “q” might each indicate an IMEI value for different
domains, but “q” is not always associated with a PII leak. While
we found no solution that perfectly addresses this ambiguity, we
developed effective heuristics for identifying “suspicious” keys that
are likely associated with PII values.

We use two steps to automatically extract PII leaks from a
network flows classified as a leak. The first step is based on the
relative probability that a suspicious key is associated with a PII
leak, calculated as follows:
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Ptype,key = KPII
Kall

where type is the PII type (e.g., IMEI, e-mail address), key is the
suspicious key for that type of PII, KPII is the number of times
the key appeared in flows identified with PII leaks, and Kall is the
number times the key appeared in all flows. The system looks for
suspicious keys that have Ptype,key greater than a threshold. We set
this value to an empirically determined value, 0.2, based on finding
the best trade-off between false positives (FPs) and true positives
(TPs) for our dataset. For users wanting more or less sensitivity,
we will make this a configurable threshold in ReCon (e.g., if a user
wants to increase the likelihood of increasing TPs at the potential
cost of increased FPs).

In the second step, we use a decision tree classifier, and observe
that the root of each tree is likely a key corresponding to a PII value.
We thus add these roots to the suspicious key set and assign them a
large P value.

In the next section, we evaluate ReCon using controlled
experiments on a pre-labeled dataset. This evaluation will only use
the initial training phase. Next, we evaluate ReCon in the wild
with a user study on our public deployment (§6). This evaluation
will use both the initial training phase and the continuous training
phase obtained from real users.

5. EVALUATION
This section evaluates the effectiveness of ReCon in terms of

accuracy and performance. First, we describe our methodology,
then we describe the results from controlled experiments in terms
of classifier accuracy compared to ground truth and to information
flow analysis. In the next section, we evaluate our system based on
results from a user study.

Our key finding are: 1) we demonstrate that a decision-tree
classifier is both accurate (99% overall) and efficient (trains in
seconds, predicts in sub-milliseconds); 2) ReCon identifies more
PII than static and dynamic information-flow analysis techniques,
and can learn from the results of these approaches to improve its
coverage of PII leaks. Note that this paper focuses on reliably
identifying leaks and enabling control, but does not evaluate the
control functionality.

5.1 Dataset and Methodology
To evaluate ReCon accuracy, we need app-generated traffic

and a set of labels indicating which of the corresponding flows
leak PII. For this analysis, we reuse the data from controlled
experiments presented in §2.3; Table 3 summarizes this dataset
using the number of flows generated by the apps, and fraction that
leak PII. We identify that more than 6,500 flows leak PII, and
a significant fraction of those flows leak PII to known trackers.
The code and data from our controlled experiments are open-
source and publicly available at http://recon.meddle.
mobi/codeanddata.html.

Recall from §4.1 that we use k-fold cross-validation to evaluate
our accuracy by training and testing on different random subsets of
our labeled dataset. We tried both k = 10 and k = 5, and found
these values caused only a small difference (less than 1%) in the
resulting accuracy.

We use this labeled dataset to train classifiers and evaluate their
effectiveness using the following metrics. We define a positive flow
to be one that leaks PII; likewise a negative flow is one that does not
leak PII. A false positive occurs when a flow does not leak PII but
the classifier predicts a PII leak; a false negative occurs when a flow
leaks PII but the classifier predicts that it does not. We measure the

false positive rate (FPR) and false negative rate (FNR); we also
include the following metrics:

• Correctly classified rate (CCR): the sum of true positive (TP)
and true negative (TN) samples divided by the total number of
samples. CCR = (TN + TP )/(TN + TP + FN + FP ).
A good classifier has a CCR value close to 1.

• Area under the curve (AUC): where the curve refers to receiver
operating characteristic (ROC). In this approach, the x-axis is
the false positive rate and y-axis is the true positive rate (ranging
in value from 0 to 1). If the ROC curve is x = y (AUC = 0.5),
then the classification is no better than randomly guessing. A
good classifier has a AUC value near 1.

To evaluate the efficiency of the classifier, we investigate the
runtime (in milliseconds) for predicting a PII leak and extracting
the suspected PII. We want this value to be significantly lower than
typical Internet latencies.

We use the weka data mining tool to investigate the above metrics
for several candidate machine learning approaches to identify a
technique that is both efficient and accurate. Specifically, we
test Naive Bayes, C4.5 Decision Tree (DT) and several ensemble
methods atop DTs (AdaBoost, Bagging, and Blending).

5.2 Lab Experiments
In this section, we evaluate the impact of different implementation

decisions and demonstrate the overall effectiveness of our adopted
approach.

5.2.1 Machine Learning Approaches
A key question we must address is which classifier to use. We

believe that a DT-based classifier is a reasonable choice, because
most PII leaks occur in structured data (i.e., key/value pairs), and a
decision tree can naturally represent chained dependencies between
these keys and the likelihood of leaking PII.

To evaluate this claim, we tested a variety of classifiers according
to the accuracy metrics from the previous section, and present the
results in Fig. 3. We plot the accuracy using a CDF over the domains
that we use to build per-domain per-OS classifiers as described in
§4.1. The top two graphs (overall accuracy via CCR and AUC),
show that Naive Bayes has the worst performance, and nearly all
the DT-based ensemble methods have high CCR and AUC values.
(Note that the x-axis does not start at 0.)

Among the ensemble methods, Blending with DTs and k-nearest-
neighbor (kNN) yields the highest accuracy; however, the resulting
accuracy is not significantly better than a simple DT. Importantly,
a simple DT takes significantly less time to train than ensemble
methods. For ensemble methods, the training time largely depends
on the number of iterations for training. When we set this value to
10, we find that ensemble methods take 7.24 times longer to train
than a simple DT on the same dataset. Given the significant extra
cost with minimal gain in accuracy, we currently use simple DTs.

The bottom figures show that most DT-based classifiers have
zero FPs (71.4%) and FNs (76.2%) for the majority of domains.
Further, the overall accuracy across all per-domain per-OS
classifiers is >99%. The domains with poor accuracy are the
trackers rlcdn.com and turn.com, due to the fact their positive
and negative flows are very similar. For example, in this case the
key partner_uid is associated both with an Android ID value
and another unknown identifier.

To provide intuition as to why DTs work well, and why PII
leak detection presents a nontrivial machine-learning problem, we
include several examples of DTs trained using our data. Some cases
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Manual tests Automated tests (Monkey)
OS (Store) iOS (App) Android (Play) Windows (WP) Android (Play) Android (AppsApk)
Apps tested 100 100 100 100 850
Apps leaking PII 63 56 61 52 164
HTTP flows 14683 14355 12487 7186 17499

Leaking PII 845 1800 969 1174 1776
Flows to trackers 1254 1854 1253 1377 5893

Leaking PII to trackers 508 567 4 414 649

Table 3: Summary of HTTP flows from controlled experiments. Manual tests generated similar numbers of flows across platforms, but
Android leaked proportionately more PII. Collectively, our dataset contains more than 6500 flows with PII leaks.
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Figure 3: CDF of per-domain-and-OS (PDAO) classifier accuracy, for alternative classification approaches. For the 42 PDAO
classifiers, DT-based classifiers outperform Naive Bayes, and they exhibit good accuracy (high CCR and AUC, low FPR and FNR).
The vertical line depicts accuracy when using one classifier across all domains, which leads to significantly worse performance.

of PII leaks are simple: Fig. 4(a) shows that Android Advertiser
ID is always leaked to the tracker applovin.com when the text
idfa is present in network traffic. Other cases are not trivial,
as seen in Fig. 4(b). Here, we find that auid is not always
associated with an IMEI value, and the DT captures the fact that
the IMEI will not be present for a getImage.php5 request if
the urid is present. Finally, Fig. 4(c) gives an example of a non-
trival DT for a different type of PII—e-mail address. Here, the
term email appears in both positive and negative flows, so this
feature cannot be used alone. However, our classifier learns that the
leak happens in a /user/ request when the terms session and
deviceId are not present.6 Overall, 62% of DTs are the simple
case (Fig. 4(a)), but more than a third have a depth greater than two,
indicating a significant fraction of cases where association rules are
nontrivial.

5.2.2 Per-Domain-and-OS Classifiers
We now evaluate the impact of using individual per-domain-

and-OS (PDAO) classifiers, instead of one general classifier for all
6Note that in this domain deviceId is actually used for an app-
specific identifier, not a device identifier.

flows. We build PDAO classifiers for all domains with greater than
100 samples (i.e., labeled flows), at least one of which leaks PII. For
the remaining flows, there is insufficient training data to inform a
classifier, so we create a general classifier based on the assumption
that a significant fraction of the flows use a common structure for
leaking PII.7

We evaluate the impact of PDAO classifiers on overall accuracy
in Figure 3. The vertical lines in the subgraphs represent values
for the general classifier, which is trained using all flows from all
domains. The figure shows that >95% of the PDAO classifiers
have higher accuracy than the general classifier. Further, the high-
accuracy PDAO classifiers cover the vast majority of flows in our
dataset (91%). Last, training PDAO classifiers is substantially
less expensive in terms of runtime: it takes minutes to train PDAO
classifiers for thousands of flows, but it takes hours to train general
classifiers for the same flows.

7Note that once ReCon acquires sufficient labeled data (e.g., from
users or controlled experiments) for a destination domain, we
create a PDAO classifier.
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Figure 4: Example decision trees (DTs) for ReCon’s per-domain per-OS classifiers. The classifier beings at the root (top) node, and
traverses the tree based on whether the term at each node is present. The leaves (boxes) indicate whether there is a PII leak (positive) or not
(negative) for each path. The top right of each figure shows the number of positive/negative samples used to train each DT.

5.2.3 Feature Selection
The accuracy of the classifiers described above largely depends

on correctly identifying the subset of features for training. Further,
the training time for classifiers increases significantly as the number
of features increases, meaning that an efficient classifier requires
culling of unimportant features. A key challenge in ReCon is
determining how to select such features given the large potential
set derived from the bag-of-words approach.

We use Figure 5 to illustrate this problem and how we address
it. Here, we focus on statistics for the tracker domain mopub.com
(266 flows out of 1,276 leak PII); other domains exhibited similar
properties.

First, we focus on the threshold for including features in our
training set. As described in § 4.1, we filter out features from
words that appear infrequently. Fig. 5(a) shows the impact of
this decision on training time, where the x-axis is the minimum
number of appearances for a word to be included as a feature, and
the y-axis is the time required to train a classifier on the resulting
features. The figure shows that including all words (threshold = 1)
significantly increases training time, but there is a minimal impact
on training time if the threshold is greater than or equal to 20. The
corresponding number of features decreases from 450 to 29 as the
threshold for word occurrence increases from 1 to 99.

Picking the right number of features is also important for
classifier accuracy, as too many features may lead to overfitting and
too few features may lead to an incomplete model. We evaluate
this using Fig. 5(b), where the x-axis is the number of features,
the left y-axis is accuracy (the y-axis does not start at zero), and
the right y-axis is training time. Even small numbers of features
lead to high accuracy for this domain, but increasing the number
of features beyond 250 does not improve performance (but does
increase training time). We see a similar effect on the FP rate in
Fig. 5(c).

While the training time may not seem high in this context,
we note that this cost must be incurred for each domain and
each time we want to update the classifier with user-labeled
flows. With potentially thousands of flows and labels in a large-
scale deployment, such training times can significantly affect the
scalability and responsiveness of ReCon.

With this in mind, we propose the following strategies for
picking threshold values. First, we can use the above analysis
to find the best threshold, then periodically update this threshold
based on new labeled data. Second, we can pick a fixed threshold
based on the average threshold across all domains (word frequency

= 21). We evaluated the impact of these two approaches, and found
they were nearly identical for our dataset. This suggests that a
fixed value is sufficient for our dataset, but we propose periodically
updating this threshold by performing the above analysis daily or
weekly as a low-priority background process.

5.2.4 PII Extraction Strategies
As discussed in § 4.2, we use two heuristics to identify key/value

pairs that are likely to leak PII. We use our dataset to evaluate
this approach, and find that the FP and FN rates are 2.2% and
3.5%, respectively. By comparison, a naive approach that treats
each key/value pair equally yields FP and FN rates of 5.1% and
18.8%, respectively. Our approach is thus significantly better, and
our FP and FN rates are low enough to correctly extract PII the vast
majority of the time.

5.3 Comparison with IFA
Our labeled dataset in the above analysis may miss PII leaks

that are obfuscated or otherwise hidden from our analysis. We
now evaluate our approach by comparing with one that is resilient
to such issues: information flow analysis (IFA). We experiment
with three IFA techniques: (1) static IFA with FlowDroid [13],
(2) dynamic IFA with TaintDroid [24] (via Andrubis [44]), and
(3) AppAudit [59], which uses a combination of both static
and approximated dynamic analysis. Each of these tools has
limitations: some are very resource intensive and some pose
restrictions on the type of apps they can successfully analyze.
Static IFA. FlowDroid detects PII leaks as data flowing between
sensitive sources and sinks, which are configured via a list of
Android API calls. However, the analysis is quite resource
intensive: for 4.99% of apps, our available memory of 8GB was
insufficient for analysis; for 17.24% of apps the analysis exceeded
our analysis timeout of 30 minutes. The detected leaks are reported
as paths between the API calls. Note that this approach can lead to
false positives, since a detected leak may never be triggered during
app execution.
Dynamic IFA. Andrubis is an app analysis sandbox that uses
TaintDroid to identify PII leaks from Android apps during dynamic
analysis. Andrubis installs each app in an emulated Android
environment and monitors its behavior for 240 seconds. Besides
calling all of the app’s registered components and simulating
common events, such as incoming SMS and location changes, it
uses Monkey [11] to generate approximately 8,000 pseudo-random
streams of user events. In addition to detailed analysis report
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Figure 5: Feature selection for the tracker domain mopub.com. Using ≈200 features leads to high accuracy and low training times; however,
adding more features increases training time with no benefit to accuracy.

Approach #apps leaking PII Device User Contact Location Credentials(#reports) Identifier Identifier Information
FlowDroid (Static IFA) 91 (546) 51 (21.52%) 0(-) 9 (52.94%) 52 (64.20%) ×
Andrubis (Dynamic IFA) 90 (497) 78 (35.46%) × 10 (62.50%) 3 (3.75%) ×
AppAudit (Hybrid IFA) 64 (620) 57 (24.05%) × 3 (17.65%) 4 (4.94%) ×
ReCon 155 (750) 145 (61.18%) 6 (100%) 4 (23.53%) 29 (35.80%) 0 (-)
Union of all approaches 278 (750) 237 6 17 81 0

Table 4: Comparison of ReCon with information flow analysis (IFA) tools. This comparison is based on automated tests for 750 Android
apps (apps from the Google Play and AppsApk dataset for which we observed network flows). We present the number of Android apps
detected as leaking PII (or in the case of FlowDroid, flagged as potentially leaking PII), as well as the percentage of leaking apps detected by
each tool out of all leaking apps detected by any of the tested tools in each category (× means the tool does not track that type of information).
User credentials were not leaked because our automation tools cannot input them.

including all detected data leaks, it also provides the recorded
network packet traces. However, this analysis fails for 33.73% of
apps because they exceed the file size and/or API level limit of
Andrubis.
Hybrid IFA. AppAudit flags functions that potentially leak PII
through static analysis, then performs simulated dynamic analysis
to filter out candidate functions to confirm PII leaks. It reports
leaks to the network, file system and through SMS from sources
such as the location, contacts and device identifiers. The analysis
failed for 17.33% of apps. Note that AppAudit only approximates
the execution of suspicious functions, and thus does not record any
network packet traces.
Methodology and results. We use the 850 apps from AppsApk.com
and the top 100 apps from Google Play from §2.3, and focus on the
750 apps that produced network traffic in our experiments. Since
static and hybrid IFA approaches do not provide network flows,
they only indicate whether an app will potentially leak a certain
type of PII. To compare these techniques with dynamic analysis, we
base our comparison on the number of apps that potentially leak a
certain type of PII. Specifically, we flag an app as a leaking a certain
type of PII if any of the tested tools detected an actual or potential
PII leak in that category (this occurs for 278 apps). We further
filtered out cases where dynamic analysis incorrectly flagged a PII
leak.

Table 4 shows the number and percentage of apps that
were flagged by FlowDroid, Andrubis, AppAudit and ReCon.
FlowDroid mainly identified potential location and phone number
leaks, while AppAudit mainly identified IMEI leaks. Andrubis
performed well in detecting device identifiers (ICCID, IMEI, IMSI)
and the phone number. Importantly, ReCon identifies more PII
leaks overall, and in more categories than IFA.

The above results are encouraging for ReCon, and we further
investigated mismatches between ReCon and TaintDroid results,
since the latter provides network traces that we can process

Type of PII being leaked
# leaks Device User Con- Loca- Cred-
detected Id. Id. tacts tion entials

Andrubis

plaintext 173 N/A 10 8 N/A
obfuscated 124 N/A 16 0 N/A
incorrect 140 N/A 24 6 N/A
Total 457 N/A 50 14 N/A

ReCon TP 146 17 7 35 0
FN 27 0 0 0 0

Table 5: Comparison with Andrubis (which internally uses
TaintDroid), for Android apps only. Note that this table
counts the number of flows leaking PII, not the number of apps.
TaintDroid has a higher false positive rate than ReCon, but catches
more device identifiers. After retraining ReCon with these results,
ReCon correctly identifies all PII leaks. Further, ReCon identifies
PII leaks that TaintDroid does not.

via ReCon. Note, as the authors of TaintDroid themselves
acknowledge [24], it may generate false positives (particularly for
arrays and IMSI values), due to propagating taint labels per variable
and IPC message. We thus manually inspected flows flagged as
leaking PII, and discarded cases where the identified PII did not
appear in plaintext network flows (i.e., false positives). Table 5
shows the results of our analysis, grouped by PII type.

We use the plaintext leaks identified by Andrubis as ground truth,
and evaluate our system by sending the Andrubis network traffic
through ReCon trained with the pre-labeled dataset described in
Section §5.1. The ReCon false positive rate was quite low (0.11%),
but the false negative rate was relatively high (15.6%). The vast
majority of false negative flows were Device ID leaks (124/457 are
obfuscated and 140/457 are false positive reports from Andrubis).
Importantly, when we retrain ReCon’s classifier with the Andrubis
data, we find that all of the false negatives disappear. Thus, ReCon
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is adaptive in that its accuracy should only improve as we provide
it more and diverse sets of labeled data. In the next section we
describe results suggesting that we can also use crowdsourcing to
provide labeled data.

In addition, we can use network traces labeled by IFA to train
ReCon classifiers even in the presence of PII obfuscation. This
works because ReCon does not search for PII itself, but rather the
contextual clues in network traffic that reliably indicate that PII
leaking.

Finally, ReCon identified several instances of PII leaks that are
not tracked by IFA. These include the Android ID, MAC address,
user credentials, gender, birthdays, ZIP codes, and e-mail addresses.

6. RECON IN THE WILD
We now describe the results of our IRB-approved user study,

where participants used ReCon for at least one week and up
to over 200 days, interacted with our system via the UI, and
completed a follow-up survey. Our study is biased toward flows
from the US due to initial recruitment in the Boston area, but
includes connections from users in 21 countries in four continents.
While we cannot claim representativeness, we can use the user
feedback quantitatively, to understand the impact of labeling on our
classifiers. We also use the study qualitatively, to understand what
PII was leaked from participant devices but not in our controlled
experiments, and to understand users’ opinions about privacy.

The study includes 92 users in total, with 63 iOS devices and 33
Android devices (some users have more than one device). In the
initial training phase, we initialized the ReCon classifiers with the
pre-labeled dataset discussed in §5. Then we use the continuous
user feedback to retrain the classifiers. The anonymized results of
PII leaks discovered from our ongoing user study can be found at
http://recon.meddle.mobi/app-report.html.
Runtime. While the previous section focused on runtime in terms
of training time, an important goal for ReCon is to predict and
extract PII in-band with network flows so that we can block/modify
the PII as requested by users. As a result, the network delay
experienced by ReCon traffic depends on the efficiency of the
classifier.

We evaluated ReCon performance in terms of PII prediction and
extraction times. The combined cost of these steps is less than
0.25 ms per flow on average (std. dev. 0.88), and never exceeds
6.47 ms per flow. We believe this is sufficiently small compared
to end-to-end delays of tens or hundreds of milliseconds in mobile
networks.
Accuracy “in the wild.” Participants were asked to view their PII
leaks via the ReCon UI, and label them as correct or incorrect. As
of Dec 8, 2015, our study covers 1,120,278 flows, 9,573 of which
contained PII leaks that ReCon identified. Of those, there are 5,351
TP leaks, 39 FP leaks and 4,183 unlabeled leaks. Table 6 shows the
results across all users. The users in the study found few cases when
ReCon incorrectly labeled PII leaks. The vast majority (85.6%) of
unlabeled data is device identifiers, likely because it is difficult for
users to find such identifiers to compare with our results.
Impact of user feedback on accuracy. To evaluate the impact
of retraining classifiers based on user feedback, we compare the
results without user feedback (using our initial training set only)
with those that incorporate user feedback. After retraining the
classifier, the false positive rate decreased by 92% (from 39 to
3), with a minor impact on false negatives (0.5% increase, or
18/5,351).
Retraining classifiers. As discussed in §4.1, we retrain ReCon
classifiers periodically and after collecting sufficient samples. We
provide options to set the frequency of retraining and the retraining

process is relatively low cost. In our experience, retraining the
general classifier once a day or once a week is sufficient to retain
high accuracy. This is a process that occurs in the background,
takes little time per domain (0.9 s per domain on average), and is
easily parallelized to reduce retraining time.
User survey. To qualitatively answer whether ReCon is effective,
we conducted a survey where we asked participants, “Have you
changed your ways of using your smartphone and its applications
based on the information provided by our system?” Of those who
responded to the voluntary survey, a majority (20/26) indicated that
they found the system useful and changed their habits related to
privacy when using mobile devices. This is in line with results
from Balebako et al. [15], who found that users “do care about
applications that share privacy-sensitive information with third
parties, and would want more information about data sharing.”

In terms of overhead, we found that a large majority of users
(19/26) observed that battery consumption and Internet speed
were the same better when using ReCon. While the remaining
users observed increased battery consumption and/or believed their
Internet connections were slower, we do not have sufficient data
to validate whether this was due to ReCon or other factors such
inherent network variations or increased user awareness of these
issues due to our question.
PII leak characterization. We now investigate the PII leaked in
the user study. As Table 6 shows, the most commonly leaked PII is
device identifiers, likely used by advertising and analytic services.
The next most common leak is location, which typically occurs
for apps that customize their behavior based on user location. We
also find user identifiers commonly being leaked (e.g., name and
gender), suggesting a deeper level of tracking than anonymous
device identifiers. Depressingly, even in our small user study
we found 171 cases of credentials being leaked in plaintext (102
verified by users). For example, the Epocrates iOS app (used by
more than 1 million physicians and health professionals) and the
popular dating app Match.com (used by millions, both Android and
iOS were affected) leaked user credentials in plaintext. Following
responsible disclosure principles, we notified the app developers.
The Epocrates app was fixed as of November, 2015 (and the
vulnerability was made public [6] after we gave them time to reach
out to users to convince them to upgrade), and Match.com fixed
their password exposure in January, 2016 without notifying us or
the public. These results highlight the negative impact of closed
mobile systems—even basic security is often violated by sending
passwords in plaintext (21 apps in our study).

We further investigate the leaks according to OS (Table 6).8 We
find that the average iOS user in our study experienced more data
leaks than the average Android user, and particularly experienced
higher relative rates of device identifier, location, and credential
leaks.

We investigated the above leaks to identify several apps
responsible for “suspicious” leaks. For example, the ABC Player
app is inferring and transmitting the user’s gender. Last, All
Recipes—a cookbook app—is tracking user locations even when
there is no obvious reason for it to do so.

7. RELATED WORK
Our work builds upon and complements a series of related

work on privacy and tracking. Early work focused on tracking
via Web browsers [7, 53]. Mobile devices make significant PII

8Note that these results are purely observational and we do not
claim any representativeness. However, we did normalize our
results according to the number of users per OS.
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Feedback on leaks
Leak Type total correct wrong no label/unknown

iO
S

Device ID. 3229 12 35 3182
User ID. 655 216 2 437
Contact Info. 6 3 1 2
Location 4836 4751 0 85
Credential 36 30 0 6

A
nd

r o
id

Device ID. 399 2 0 397
User ID. 31 30 0 1
Contact Info. 8 8 0 0
Location 238 227 0 11
Credential 135 72 1 62

Table 6: Summary of leaks predicted by OS. We observe a higher
number of leaks for iOS because the number of iOS devices (63) is
more than the number of Android devices (33).

available to apps, and early studies showed PII such as location,
usernames, passwords and phone numbers were leaked by popular
apps [57]. Several efforts systematically identify PII leaks from
mobile devices, and develop defenses against them.
Dynamic analysis. One approach, dynamic taint tracking,
modifies the device OS to track access to PII at runtime [24]
using dynamic information flow analysis, which taints PII as it
is copied, mutated and exfiltrated by apps. This ensures that all
access to PII being tracked by the OS is flagged; however, it
can result in large false positive rates (due to coarse-granularity
tainting), false negatives (e.g., because the OS does not store
leaked PII such as a user’s password), and incur significant runtime
overheads that discourage widespread use. Running taint tracking
today requires rooting the device, which is typically conducted
only by advanced users, and can void the owner’s warranty.
Other approaches that instrument apps with taint tracking code
still either require modifications to platform libraries [16], and
thus rooting, or resigning the app under analysis [50], essentially
breaking Android’s app update and resource sharing mechanisms.
When taint tracking is performed as part of an automated analysis
environment, user input generation is crucial to improve coverage
of leaks. Tools such as Dynodroid [47], PUMA [30], and A3E [14]
automatically generate UI events to explore UI states, but require
manual input for more complex user interactions, e.g., logging in
to sites [20]. Finally, taint tracking does not address the problem
of which PII leaks should be blocked (and how), a problem that
is difficult to address in practice [34]. Nevertheless, automated
dynamic analysis approaches are complementary to ReCon: as we
demonstrated in §5.3, ReCon can learn from PII leaks identified
through dynamic information flow analysis.
Static analysis. Another approach is to perform static analysis
(e.g., using data flow analysis or symbolic execution) to determine
a priori whether an app will leak privacy information [12, 13, 19,
23, 25, 31, 37, 39, 46, 59, 61–63]. This approach can avoid run-
time overhead by performing analysis before code is executed, but
state-of-the-art tools suffer from imprecision [18] and symbolic
execution can be too time-intensive to be practical. Further,
deploying this solution generally requires an app store to support
the analysis, make decisions about which kinds of leaks are
problematic, and work with developers to address them. Static
analysis is also limited by code obfuscation, and tends not to handle
reflection and dynamically loaded code [64]. A recent study [44]
finds dynamically loaded code is increasingly common, comprising
almost 30% of goodware app code loaded at runtime.
New execution model. Privacy capsules [33] (PC) are an OS
abstraction that prevent privacy leaks by ensuring that an app
cannot access untrusted devices (e.g., a network interface) after it

accesses private information, unless the user explicitly authorizes
it. The authors show the approach is low cost and effective for some
apps, but it is currently deployed only as a prototype extension to
Android and requires app modifications for compliance.
Network flow analysis. ReCon analyzes network flows to identify
PII leaks. Previous studies using network traces gathered inside
a mobile network [26, 58], in an ISP [45], and in a lab setting [41]
identified significant tracking, despite not having access to software
instrumentation. In this work, we build on these observations
to both identify how users’ privacy is violated and control these
privacy leaks regardless of the device OS or network being used.

PrivacyGuard [56], AntMonitor [42] and HayStack [51] use
the Android VPNService to intercept traffic and perform traffic
analysis. A limitation of these approaches is they rely on hard-
coded identifiers for PII, or require knowledge of a user’s PII
to work. Further, these approaches currently work only for the
Android OS. In contrast, ReCon is cross-platform, does not require
a priori knowledge of PII, and is adaptive to changes in how PII
leaks.

8. CONCLUSION
In this paper we presented ReCon, a system that improves

visibility and control over privacy leaks in traffic from mobile
devices. We argued that since PII leaks occur over the network,
detecting these leaks at the network layer admits an immediately
deployable and cross-platform solution to the problem. Our
approach based on machine learning has good accuracy and low
overhead, and adapts to feedback from users and other sources of
ground-truth information.

We believe that this approach opens a new avenue for research on
privacy systems, and provides opportunities to improve privacy for
average users. We are investigating how to use ReCon to build a
system to provide properties such as k-anonymity, or allow users
to explicitly control how much of their PII is shared with third
parties—potentially doing so in exchange for micropayments or
access to app features.
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