
A Case for Personal Virtual Networks

David Choffnes
Northeastern University

Abstract
Our mobile devices regularly encounter and connect to mul-
tiple networks to maintain seamless connectivity. While this
enables a variety of services we increasingly rely on, these
ubiquitous network connections raise a number of important
concerns. Our devices regularly send traffic over networks
they do not fully trust and that are not under user control,
which leads to security vulnerabilities, policies that impact
performance and service availability, and privacy violations.

We propose a new networking abstraction called Personal
Virtual Networks, or PVNs, to address these issues. The key
idea is to allow a device connecting to a foreign network
to establish a virtual network under the device’s full control,
thus providing the illusion of a personal home network wher-
ever the device roams. Devices can establish trusted network
configurations, define policies for network traffic, and even
deploy limited code that interposes on their traffic using a
software middlebox environment. By making in-network re-
sources available to devices via a secure and flexible inter-
face, PVNs can enable more secure, private, and performant
network experiences for users while potentially generating a
new revenue stream for access networks that support them.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture

Keywords
Virtual networks, middleboxes, SDN

1. INTRODUCTION
Our laptops, mobile devices, and IoT devices seamlessly

connect to WiFi access points and cellular networks, and
sometimes both [27]. More often than not, we are con-
nected to networks that we do not manage, control, and/or
trust. There are very good reasons to take control out of the
hands of users, as ISPs must protect the network from harm,

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
HotNets-XV, November 09 - 10, 2016, Atlanta, GA, USA
Copyright is held by the owner. Publication rights licensed to ACM.
Copyright 2016 ACM 978-1-4503-4661-0/16/11 ...$15.00
DOI: http://dx.doi.org/10.1145/3005745.3005753.

e.g., by preventing any single device from unfairly consum-
ing scarce network resources [12, 41].

However, there are many cases where the lack of con-
trol can cause substantial harm to users. For example, mass
surveillance (even using TLS interception), malware distri-
bution, and policies such as shaping and content manipu-
lation [19, 21] impact network traffic in ways that threaten
privacy and security, and violate user expectations.

In addition to exposing users to misbehavior, these net-
works make it frustratingly difficult to deploy new protocols
and policies for network traffic. For example, proxies and
transcoders can optimize performance [1, 11, 42], but ISPs
do not allow end systems to select and deploy them inside
the network. Recent solutions to mitigate privacy leaks [30]
can be efficiently deployed in carrier networks but require
privileged access to traffic and network infrastructure.

Traditional approaches to address these problems fall
along three axes. First, when faced with an untrusted net-
work, a common approach to protect traffic is to securely
tunnel it to one that is trusted using a virtual private net-
work (VPN) at the cost of performance overhead. Second,
ISPs deploy middleboxes to implement many useful network
functions, but users do not have the flexibility to set their
own policies. Third, software deployed on end hosts can ad-
dress certain security, privacy, and performance issues, but
there are limited resources on mobile devices to run them.

We argue for an alternative approach that leverages a new
opportunity presented by networks that are increasingly en-
dowed with network virtualization support and spare com-
putation resources: provide each device with its own virtual
network under its control. Such personal virtual networks,
or PVNs, can allow devices to create a virtual network, de-
termine the policies that apply to traffic over each link in
the virtual topology, the locations of software middleboxes
that interpose on the traffic, and the code that executes on
that traffic. For example, a device can deploy a virtual net-
work with software middleboxes that validate TLS certifi-
cates, selectively optimize TCP connections, and identify
privacy leaks (Fig. 1(a)). In addition, such PVNs can enable
selective routing of network traffic, leveraging path diversity
from multihomed networks (Fig. 1(c)). In a sense, PVNs
provides users and devices the illusion that they are in the
same, fully controlled and customized network environment
regardless of which access network they connect to.

The idea of ubiquitous personal virtual networks opens up
numerous opportunities, as well as interesting challenges.
For example, PVNs raise a number of questions that we dis-

8

cuss in this position paper, such as how to design and archi-
tect this service, how to trust and audit PVN providers, what
to do when an access network does not support it, and how
to incentivize deployment.

The rest of the paper is organized as follows. In the next
section, we provide detailed motivation for our work and list
key challenges for a PVN deployment. In Section 3, we
present our proposed architecture and deployment models.
Section 4 presents several examples of new and improved
services that PVNs enable. We present related work in Sec-
tion 5 and conclude in Section 6.

2. MOTIVATION AND CHALLENGES
The PVN abstraction addresses a growing problem in to-

day’s diverse mobile Internet systems: a lack of transparency
or control over network traffic, particularly from mobile
devices. Mobile OSes limit users to installing apps only
from a curated stores subject to unilateral policies for inclu-
sion [3, 4], limiting the ability to install software to improve
network security, performance, and privacy. Mobile carriers
can and do manipulate network traffic [42] (e.g., via block-
ing and shaping), often without user awareness or consent.

Sometimes, these policies are put in place for the greater
good, i.e., protecting the users who install apps [3, 4] and
use access networks [12]. However, these policies have cre-
ated significant collateral damage: previous studies identi-
fied security [22, 23], privacy [10, 40], policy [41], and per-
formance [35] issues in mobile systems. In the paragraphs
below, we describe the costs of limited transparency and
control to motivate the need for a new solution.

2.1 Security
The security of our day-to-day interactions on the Internet

rely on trust assumptions that are easily violated. For exam-
ple, we often implicitly assume that the plaintext contents
of our TLS-encrypted traffic cannot be accessed or manipu-
lated by third parties. However, many apps and browsers do
not properly check certificate validity, if at all [23]—opening
users and their devices to covert attacks from third-parties
that man-in-the-middle (MITM) TLS connection to expose
sensitive information or manipulate content.

We also generally trust that an ISP’s DNS servers will
provide valid mappings from names to IP addresses; how-
ever, the lack of security in today’s DNS hierarchy puts users
at risk of forged mappings. Combined with weaknesses in
the TLS PKI, users can easily be sent to malicious domains
without their knowledge.

Finally, we trust that our mobile OSes cannot easily be
subverted by malicious software accessed over the network.
However, there are a number of known attacks that exploit
mobile OSes in the wild, and many users are indefinitely
vulnerable due to a lack of vendor-supplied OS updates or
user unawareness of available patches [39]. In these cases,
the only way to improve user security is to detect malware
in network traffic and block them, but there is no guarantee

that such functionality is present in a given ISP.
These issues point to the need for additional mechanisms

to improve network security: deploying trusted software
running on trusted hardware to reduce the attack surface for
connected devices. Because this is difficult to provide on
mobile devices themselves, we propose running these miti-
gation techniques in the network. This not only provides a
device- and app-agnostic platform to improve security, but
also offloads potentially expensive computations into an en-
vironment with richer energy and computation resources.

2.2 Performance
Our devices increasingly access the network via wire-

less (WiFi or cellular) connections, and the performance
from wireless providers lags behind their fixed-line coun-
terparts [41, 45]. This affects users in terms of poor per-
formance (e.g., latency and throughput), data consumption
from monthly quota, and limited battery lifetime due to
network activity. Proposals to address such problems fall
along several axes: end-to-end solutions, in-network opti-
mizaitons, and network management.

End-to-end solutions. Recent work proposes new protocols
and optimizations to more efficiently use existing resources.
For example, Chrome uses SPDY and QUIC protocols to im-
prove mobile Web performance. Several browsers [25, 33]
partially render pages in the cloud before delivering them to
browsers. This improves performance for some pages, but
a recent study calls into question the generality of this ap-
proach [34]. These solutions are also limited to traffic from
browser apps, which generate a minority of total traffic (as
little as 10% [43]).

In-network optimizations. An alternative is to implement
performance-enhancing functionality in the mobile network
via middleboxes, e.g., via TCP-terminating HTTP proxies.
Previous work shows that splitting TCP connections should
offer better client-perceived performance (i.e., faster down-
loads) than direct connections if the proxy is on the same
path [11, 17]. Splitting the connection reduces the RTTs be-
tween connected endpoints, which allows TCP to grow its
congestion window faster, and it speeds loss detection and
recovery. However, recent work shows that the impact of
such proxies is mixed [44]: devices with better link qual-
ity benefited most from proxying, and the rest could receive
worse performance due to proxying overheads.

Network management. To manage scarce bandwidth re-
sources, operators historically throttled certain types of traf-
fic (e.g., P2P [9] or video [19]). While there is active dis-
cussion on whether to enforce network neutrality, recent
FCC rules [12] bar all ISPs from commercially unreason-
able practices against Internet traffic, including throttling.

Under these rules, several ISPs have explored alterna-
tive models to provide differential service. In one case, T-
Mobile’s Binge On program, which is enabled by default for
its subscribers, zero-rates all participating video provider’s

9

PVNC	 PVNC	

Cloud Storage

(a) PVNC example (b) Deployment example

PVNC	
Cloud	Servers	Home	Network	

(c) Selective redirection

Figure 1: Personal virtual network components. (a) Users create personal virtual network configurations (PVNCs) and distribute them to devices and/or cloud
storage. (b) In deployment, a PVN can use in-network devices (solid boxes) and software middleboxes (dashed boxes) to selectively interpose on traffic
generated by a device. (c) A PVN can support selective redirection to cloud, home, or other execution environments depending on the needs of the configured
services.

traffic, but also throttles it to 1.5 Mbps (often leading to sub-
HD quality) [18]. One problem with this approach is that
makes it difficult for users to set fine-grained policies re-
garding the service provided for any specific network flow.
For example, users cannot decide to stream at high resolu-
tion (without zero rating) at the time the video is loaded;
rather, there is one policy that applies to all of their video
traffic. Such programs raise significant net neutrality con-
cerns, mainly due to a lack of transparency and user choice.

The key limitations of the above approaches to network
management and enhancing performance are that they are
limited to specific apps, or they use a one-size-fits-all ap-
proach that does not always benefit users or their network
traffic. An alternative approach that avoids net neutrality
issues and can lead to improved performance is to allow
users to configure the policies and performance optimiza-
tions that impact their traffic. These optimizations can po-
tentially leverage information about network conditions pro-
vided by the access network, assuming there are guarantees
that this data is not exposed to other parties.

2.3 Privacy
Most of our online activity is tracked by third parties, and

our apps leak personally identifiable information (PII), e.g.,
location, passwords, and phone numbers, over the Internet
without our knowledge [30, 31, 38]. Further, users are in-
creasingly surrounded by Internet of Things (IoT) devices
equipped with sensors, microphones, and cameras, that can
record and transmit our activity without consent.

A number of approaches attempt to address this issue by
tracking information flows on mobile devices and analyzing
software, but these are generally limited to specific app ver-
sions or OSes. Recent approaches that instead identify PII in
network traffic [30] show promising results, but require ei-
ther tunneling traffic to a remote network at the cost of extra
delay or analyzing network traffic on a device, at the cost of
battery life and network performance.

An alternative approach is to deploy in-network function-

ality that provides improved privacy without performance
costs. Further, users could specify privacy policies that ap-
ply not only to their own network traffic, but also to traffic
generated by sensors connected to the same network (e.g.,
blurring their face in a video recording).

3. PERSONAL VIRTUAL NETWORKS
We now introduce our personal virtual network abstrac-

tion, and describe how it can address the issues raised in the
previous section.

3.1 Overview
A personal virtual network is a virtual network that is con-

figured by devices and deployed inside a physical network
that they use to access the Internet. While we do not impose
any requirements on the type of virtual network or the con-
figurations it supports, we believe many of our goals can be
achieved by leveraging previous work on open interfaces for
specifying virtual networks, standard match/action rules to
operate on each packet, and virtual machine environments
for executing code. The key components are as follows.

Personal Virtual Network Configurations. First, a user
must provide its device with its personal virtual network con-
figuration (PVNC), e.g., the one in Fig. 1(a). This can be
created well before connecting to an access network, using
high-level tools that compile user-readable configurations
into low-level SDN code that is run in the network(s) where
the PVN is deployed. The PVNC specifies a virtual network,
the policies that apply to traffic each link in the virtual topol-
ogy, the locations of software middleboxes that interpose on
the traffic, and the code that executes on that traffic.

A user can specify the same PVNC for multiple devices,
and the PVNC can be stored on the device or provided to an
access network as a URI to a globally accessible PVNC ob-
ject (e.g., in cloud storage). In addition, PVNC components
can be provided as independent entities and shared among
users to facilitate PVNC creation. For example, we devel-
opers could create (and/or sell) malware-detection modules,

10

Web-optimizing modules, and tracker-blocking modules. To
make PVNs accessible to a general audience instead of only
networking experts, we propose building a “PVN Store”
akin to an app- or browser-extension marketplace.

PVN Discovery and Deployment Protocol. When a user’s
PVN-enabled device connects to a network, it first conducts
a network discovery operation to detect whether PVNs are
supported. This could be done during DHCP negotiation,
or afterward using protocols like UPnP. Such discovery op-
erations can span multiple providers (using limited flood-
ing, e.g., via special anycast addresses) in case the access
provider does not support PVNs.

The discovery message (DM) will specify a sequence
number (incremented for each discovery attempt), the lan-
guage and/or standards that the PVNC supports (e.g., Open-
Flow, Docker containers), the virtual network topology, and
an estimate of the network and computational resources re-
quested by the PVNC. A network that supports PVNs should
respond to each DM with the location of the PVN deploy-
ment server, the languages/standards supported, an offered
virtual network topology and resources (which may be iden-
tical to the request, or a subset), a cost per VNC module, and
a time at which the offer expires.

If the requested and offered PVNC match and the cost is
acceptable, the device sends an deployment request, which
includes the PVNC and payment details (if necessary). If
not, the device has several options. It can reject the offered
topology, choosing instead to wait for a “better” offer from
other PVNs in the discovery zone, or simply choose to es-
chew PVNs entirely. The device also can choose to send a
new DM with a PVNC that includes a subset of the origi-
nal configuration, to retrieve a new price. Last, the device
can send a deployment request using a subset of the DM-
specified configuration, e.g., including only the services that
are offered for free.

Upon receiving a deployment request, the PVN-
supporting network must install the PVNC and route the
device’s traffic through it. Upon successfully setting up
the PVNC, the network sends an acknowledgement to the
device, which also triggers a DHCP refresh to obtain the
new addresses. If the deployment fails for some reason, the
provider replies with a NACK and failure reason.

Auditor. Given that access networks are generally untrusted,
PVNs must include techniques to ensure that PVNCs are
correctly and continuously deployed. To address part of the
problem, we propose using trusted hardware/software stacks
that provide client-verifiable attestations that the specified
network configurations and software middleboxes were in-
stalled and executed as requested. In addition, the device
will need to obtain proofs that packets sent to the PVN
were actually routed correctly through the PVN. To account
for adversarial actions that manifest in the physical net-
work topology, we propose using active network measure-
ments that reliably identify policy violations. These can in-

clude tests for service differentiation, content modification,
privacy exposure, inflated/short-circuited paths, and others.
Observed violations in either configurations or policies can
be used as evidence in billing disputes, and to inform repu-
tations for PVN providers.

3.2 Why Use a New In-Network Solution?
While the previous section makes the case for using

device-configured in-network functionality to address a
number of problems when connecting to access networks,
the reader may question whether this is the right place to
deploy such features. Below, we address such questions.

Why not on devices? Many of the solutions we describe can
potentially be deployed as software running on end hosts.
However, accessing network traffic requires special privi-
leges on device OSes that make them either unavailable for
unprivileged users or raise warnings that discourage their
adoption. In addition, network functionality implemented
on mobile devices can consume scarce resources such as bat-
tery life, CPU, memory, and wireless bandwidth, and lead to
worse network performance than doing nothing at all. Last,
some problems are infeasible to address on end hosts, like
enforcing network policies that apply to inbound traffic be-
fore traversing a constrained wireless link.

Why not in the cloud or in home networks? Previous work
addresses many of the described problems by redirecting
traffic to a trusted server running on a cloud-based platform
or a device in a user’s home network, e.g., via VPNs, split
Web browsers, and privacy-enhancing middleboxes. PVNs
can also be deployed in this manner, using tunneling to reach
the PVN deployment. However, there are several disadvan-
tages for doing so when compared to using in-network sup-
port for PVNs. First, there are tunneling overheads in terms
of additional interdomain traffic and its associated latency;
e.g., 10s of ms for well connected networks [32], but poten-
tially 100s of ms for poorly connected networks. Second, the
tunneled traffic may be subject to policies (e.g., shaping) that
do not apply to untunneled traffic [19]. Last, port blocking
and service unavailability can also impact the effectiveness
of such solutions in practice.

Why not the content providers? Servers can improve per-
formance by optimizing traffic based on each client, and they
can participate in services that improve privacy and security.
However, these approaches only partially address the prob-
lem, and require users to trust each provider to protect them.

Why not use existing middleboxes? Middleboxes that im-
prove security and performance are pervasive in ISPs, so
why should we provide yet another middlebox abstraction
that potentially conflicts with or reproduces functionality al-
ready present? We argue that PVNs are complementary to
such systems, and a PVN deployment will in fact leverage
existing in-network functionality when a device configures
it (Fig. 1(b)). For example, when a device specifies a TCP
proxy, the network provider can route its traffic through a

11

physical TCP proxy. Further, PVNs will leverage existing
techniques to prove that any given network configuration
and is valid according to important invariants, thus avoid-
ing problems from configuration conflicts. Last, PVNs al-
low users to specify custom functionality via software mid-
dleboxes that is not present in existing physical middleboxes
in a given network.

3.3 Key Challenges
Building a system that supports personal virtual networks

raises a number of key challenges.

Validating that configurations and code are correctly
deployed and executed. We propose using trusted hard-
ware/software stacks to provide signed attestations that the
user’s configurations are deployed and code is executed as
specified in the virtual network. While this provides ev-
idence that software and configurations are not tampered
with, they do not provide any proof regarding any other net-
work policies or software that impact user traffic. To address
this, we propose using limited active measurements to audit
ISPs and check for violations of PVN policies.

Avoiding harm from user configurations. If users deploy
arbitrary policies and code, they can potentially harm other
users through unfair use of network and computational re-
sources, or unauthorized access to other network traffic. To
address this problem, we propose executing software mid-
dleboxes in secure sandboxes using a restricted development
language that minimize attack surfaces. Each virtual net-
work and its associated middleboxes can access only the
traffic generated by the user who configured it.

Incentivizing access network providers. We believe that
PVNs open a new opportunity for access providers to mon-
etize their networks. For example, access providers can give
users free limited resources and configurations in return for
ads, and allow users to purchase additional resources and
functionality. PVNs are also a way for providers to attract
new subscribers, e.g., by providing support for improved
security, performance, and privacy compared with competi-
tors. While such revenue models already exist in many en-
vironments (e.g., “free” airport WiFi is often provided in ex-
change for watching ads, and users are offered premium ac-
cess for a charge), a PVN architecture can provide users with
much greater flexibility in the configurations (and thus cost)
of their network connection.

Scalability and overhead. The PVN abstraction will be ef-
fective only if it can scale to serve potentially large num-
bers of subscribers with overhead that is negligible relative
to non-PVN connections. We argue that this is feasible, e.g.,
recent work [24] has shown that containers can be instanti-
ated in 30 milliseconds, add only 45 microseconds of delay,
and consume only 6 MB of memory.

Security and trust. Our approach uses a “trust but ver-
ify” model that assumes PVN-supporting networks will act

honestly most of the time. Given a string of recent rev-
elations about untrustworthy behavior from large service
providers [7, 16], this assumption clearly will not always
hold. We do not claim to solve the problem of ensuring that
ISPs are trustworthy, nor do we argue that an arbitrary ISP is
more trustworthy than a device or a VPN provider. Rather,
we avoid the problem by allowing a user’s device to tunnel
to a nearby PVN-supporting network that is trusted.

To detect dishonest ISPs, we require that devices are able
to audit their own PVN deployments. Doing so in a general
way that cannot be cheated is an open problem, but previous
work provides evidence that there are ways to successfully
audit specific policies in practice [19, 44]. Should PVNs
be successful, ISPs would be incentivized to act honestly or
face loss of revenue from blacklisting, leading users to take
their business to competing PVN-supporting providers.

Automating the process of negotiating access policies.
We expect that many network providers may support par-
tial PVN configuration of network services. In such cases,
we need a way to negotiate a compromise between what the
network provider allows and what the user requests. We be-
lieve a set of soft and hard constraints can inform the deci-
sion of whether a user is willing to connect to a given access
network, and under what conditions.

Coping with unavailability. In the extreme case of the
above issue, an access provider may not provide any PVN
functionality. For users that insist on having the guarantees
that PVNs provide, we propose tunneling traffic to nearby
networks where PVNs are supported. This could be a next-
hop AS, or it could be a server in the cloud. To efficiently
identify and select good PVN deployment locations outside
of the access network, we propose using active measure-
ments to inform the costs of alternative locations.

4. PVN-ENABLED FUNCTIONALITY
In this section, we discuss several examples of PVN-

enabled functionality. We argue that these examples sug-
gest substantial potential benefits to embracing the PVN ap-
proach today, and that the abstraction is flexible enough to
support emerging needs in future networked systems.

HTTPS/TLS Enhancements. Recent studies demonstrate
widespread mismanagement in the HTTPS ecosystem, from
server operators who do not reissue and/or revoke vulnera-
ble certificates, to browsers and apps that do not properly
check certificate validity. Addressing these problems in their
entirety may require wholesale changes to the PKI that sup-
ports them; however, using PVNs we can deploy interim so-
lutions today that recover substantial security. For example,
a PVN middlebox can perform certificate validity checks be-
yond those provided by mobile OSes and apps, and reject
connections for (or at least present warnings for) those using
invalid certificates. This protects against malicious servers
spoofing as their authentic ones, and can detect and pre-
vent unauthorized TLS interception for eavesdropping on

12

encrypted connections to authentic servers.

DNS Validation. Even if the ISP does not support DNSSEC,
a PVN DNSSEC module can provide secure DNS resolution
on behalf of the user. Further, when accessing name entries
that are not secured, the PVN can use a collection of open
resolvers to ensure that clients are not maliciously sent to
invalid addresses for a name.

Offloading computation and communication. Previous
work explored opportunities to improve performance, bat-
tery life, and data consumption by offloading computation
and communication to the cloud [8, 15]. Using PVNs, we
can provide similar functionality without the performance
cost of tunneling to a cloud-based deployments. For exam-
ple, the Opera Mini and Amazon Silk cloud-based Web ren-
derers [25, 33] could be deployed as modules in a PVN.

To further improve performance, PVNs can support ex-
plicit cooperation between apps, servers and middleboxes
that take advantage of the fact that the middlebox is closer to
the client than the servers, and the network bandwidth to the
middlebox is relatively cheap compared to mobile devices.
For example, many apps pre-fetch content to reduce user-
perceived delays when navigating apps, but this can be costly
in terms of data quota and battery life if the pre-fetched con-
tent is not used [29]. Using PVNs, we can explore a middle
ground, where we run code on the middlebox that prefetches
content to move it closer to users, without consuming device
resources. Beyond this example, PVNs can support render-
ing of Web pages and caching of static portions of pages,
bitrate transcoding for streaming video/audio, and custom
transformations on social-network feeds.

Detecting and Blocking PII. Recent work demonstrated
that substantial user PII is exposed over the Internet via net-
work connections from devices [30]. Some of this informa-
tion is necessary for applications to function correctly (e.g.,
username and password to log into a service) and is protected
from eavesdroppers (e.g., using HTTPS); however, there is
a substantial amount of PII that exposed over unencrypted
connections (and thus is vulnerable to eavesdroppers) and/or
to third parties (e.g., advertisers and analytics companies).
Using PVNs, we can deploy network-analysis tools that au-
tomatically detect when PII is leaked and provide users the
option to block or modify them. Further, given a trusted and
secure execution environment (e.g., SGX [2]), such system
can even perform a limited type of TLS interception to iden-
tify PII leaking in encrypted connections.

Certain sensitive operations (e.g., the TLS interception de-
scribed in the previous paragraph) cannot be performed in a
PVN due to lack of trust in the underlying execution envi-
ronment. In these cases, PVNs can provide flexible tunnel-
ing options, e.g., to selectively tunnel traffic needing TLS
interception to trusted cloud-based VMs, without tunneling
all of a device’s traffic (Fig. 1(c)).

Other applications. There are a large number of other ap-
plications we envision beyond the examples above, but can-

not cover into detail due to space limitations. These in-
clude malware detection, seamless encryption everywhere,
personalized performance-enhancing proxies, client-assisted
replica selection, and privacy controls for traffic that is gen-
erated by sensors recording information about users con-
nected to the same network.

5. RELATED WORK
This work is inspired by three threads of networking re-

search: software defined networking and network function
virtualization, software middleboxes and secure proxies, and
active networks.

SDNs have enabled a new class of applications and ser-
vices [13], but typically are used in environments where the
network administration configures and deploys them. With
PVNs, we propose making this functionality available in ar-
bitrary networks, configured by users, and deployed by their
devices.

There is along history of using VPNs and middleboxes to
improve security, performance [1], and privacy [36]. Re-
cent work explores the potential to combine VPNs and
software middleboxes to address these issues [28]. PVN
builds on these ideas to support device-configured software
middleboxes without needing to tunnel to another network.
VPMNs [6] provide the ability to create virtual mobile net-
works. Other work [14, 20] proposed decentralized tech-
niques for naming, securing, and routing connections be-
tween a set of personal devices that form an overlay personal
network. In contrast and orthogonal to this work, PVNs en-
able users to specify how an ISP should route and/or inter-
pose on their traffic via in-network functionality.

Active networks [37] proposed network traffic that carries
computation. PVN can be seen as a one-hop active network
with additional flexibility and control.

A variety of previous work has identified important pri-
vacy [5, 30], security [22, 26], and performance [11, 34, 41,
44] issues that arise for end hosts in various networking en-
vironments. Our work uses these studies as motivation and
provides in-network solutions to these problems.

6. CONCLUSION
We proposed a new networking abstraction, personal vir-

tual networks (PVNs), that allows a device connecting to an
access network to establish a fully configurable virtual net-
work under its control. We identified several security, perfor-
mance, and privacy problems in today’s networks that moti-
vate our design, and discussed how recent trends in software
defined networking and in-network computation will facil-
itate deployment. We provided a set of example applica-
tions built atop PVNs that address many important problems
when devices roam across different access networks today,
and several problems that we believe will become promi-
nent in the near future. As part of our ongoing work, we
are building prototype PVN networks to better understand
implementation trade-offs and guide future deployments.

13

7. REFERENCES
[1] Data Compression Proxy. developer.chrome.com/

multidevice/data-compression.
[2] Intel R© Software Guard Extensions (Intel R© SGX).

software.intel.com/en-us/sgx.
[3] App review.

developer.apple.com/app-store/review/,
June 2014.

[4] Policy guidelines and practices.
support.google.com/googleplay/
android-developer/answer/113474, June 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid:
Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proc.
of PLDI, 2014.

[6] A. Baliga, X. Chen, B. Coskun, G. de los Reyes, S. Lee,
S. Mathur, and J. E. Van der Merwe. VPMN: Virtual private
mobile network towards mobility-as-a-service. In Proc. of
MCS, 2011.

[7] T. Chung, D. Choffnes, and A. Mislove. Tunneling for
Transparency: A Large-Scale Analysis of End-to-End
Violations in the Internet. In Proc. of IMC, 2016.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. In Proc. of
MobiSys, 2010.

[9] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,
R. Mahajan, and S. Saroiu. Glasnost: Enabling end users to
detect traffic differentiation. In Proc. of USENIX NSDI, 2010.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. of USENIX OSDI,
2010.

[11] V. Farkas, B. Héder, and S. Nováczki. A Split Connection
TCP Proxy in LTE Networks. In Inf. Comm. Tech., 2012.

[12] FCC. Protecting and promoting the open internet.
www.fcc.gov/general/open-internet, April
2015.

[13] N. Feamster, J. Rexford, and E. Zegura. The road to SDN:
An intellectual history of programmable networks.
SIGCOMM Comput. Commun. Rev., 44(2), Apr. 2014.

[14] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea,
F. Kaashoek, and R. Morris. Persistent personal names for
globally connected mobile devices. In Proc. of USENIX
OSDI, 2006.

[15] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and
X. Chen. COMET: Code offload by migrating execution
transparently. In USENIX OSDI, 2012.

[16] J. Hoffman-Andrews. Verizon injecting perma-cookies to
track mobile customers, bypassing privacy controls. www.
eff.org/deeplinks/2014/11/verizon-x-uidh,
November 2014.

[17] M. Ivanovich, P. Bickerdike, and J. Li. On TCP performance
enhancing proxies in a wireless environment. IEEE Comm.
Mag., 46(9), 2008.

[18] A. M. Kakhki, F. L. D. R. Choffnes, A. Mislove, and
E. Katz-Bassett. Bingeon under the microscope:
Understanding T-Mobile’s zero-rating implementation. In
SIGCOMM Internet-QoE Workshop, 2016.

[19] A. M. Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani,
D. R. Choffnes, P. Gill, and A. Mislove. Identifying traffic
differentiation in mobile networks. In Proc. of IMC, 2015.

[20] D. N. Kalofonos, Z. Antoniou, F. Reynolds, M. V. Kleek,
J. Strauss, and P. Wisner. Mynet: A platform for secure P2P
personal and social networking services. In Proc. of PerCom,
2008.

[21] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. In Proc. of IMC,
2010.

[22] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer. Andrubis -
1,000,000 Apps Later: A View on Current Android Malware
Behaviors. In Proc. of BADGERS, 2014.

[23] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin,
B. Maggs, A. Mislove, A. Schulman, and C. Wilson. An
End-to-End Measurement of Certificate Revocation in the
Web’s PKI. In Proc. of IMC, 2015.

[24] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the art of network
function virtualization. In Proc. of USENIX NSDI, 2014.

[25] Opera mini browser. www.opera.com.
[26] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering

of HTTP-based malware and signature generation using
malicious network traces. In Proc. of USENIX NSDI, 2010.

[27] Project fi. fi.google.com.
[28] A. Rao, J. Sherry, A. Legout, W. Dabbout,

A. Krishnamurthy, and D. Choffnes. Meddle: Middleboxes
for increased transparency and control of mobile traffic. In
Proc. of CoNEXT 2012 Student Workshop, 2012.

[29] L. Ravindranath, S. Agarwal, J. Padhye, and C. Riederer.
Procrastinator: pacing mobile apps’ usage of the network. In
Proc. of MobiSys, 2014.

[30] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. R. Choffnes.
ReCon: Revealing and controlling privacy leaks in mobile
network traffic. In Proc. of MobiSys, 2016.

[31] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
Defending Against Third-Party Tracking on the Web. Proc.
of USENIX NSDI, 2012.

[32] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes someone
else’s problem: Network processing as a cloud services. In
Proc. of ACM SIGCOMM, 2012.

[33] Amazon silk browser. www.amazon.com/gp/help/
customer/display.html?nodeId=200775440.

[34] A. Sivakumar, V. Gopalakrishnan, S. Lee, S. Rao, S. Sen,
and O. Spatscheck. Cloud is not a silver bullet: A case study
of cloud-based mobile browsing. In Proc. of ACM
HotMobile, 2014.

[35] J. Sommers and P. Barford. Cell vs. WiFi: On the
Performance of Metro Area Mobile Connections. In Proc. of
IMC, 2012.

[36] Y. Song and U. Hengartner. PrivacyGuard: A VPN-based
Platform to Detect Information Leakage on Android
Devices. In Proc. of ACM SPSM, 2015.

[37] D. L. Tennenhouse and D. J. Wetherall. Towards an active
network architecture. ACM SIGCOMM Computer
Communication Review, 26(2), April 1996.

[38] The Wall Street Journal. What They Know - Mobile.
blogs.wsj.com/wtk-mobile/, December 2010.

[39] D. R. Thomas, A. R. Beresford, and A. Rice. Security
metrics for the android ecosystem. In Proc. of ACM SPSM,
2015.

[40] N. Vallina-Rodriguez, J. Shah, A. Finamore, H. Haddadi,
Y. Grunenberger, K. Papagiannaki, and J. Crowcroft.
Breaking for Commercials: Characterizing Mobile
Advertising. In Proc. of IMC, 2012.

[41] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold
Story of Middleboxes in Cellular Networks. In Proc. of ACM
SIGCOMM, 2011.

[42] N. Weaver, C. Kreibich, M. Dam, and V. Paxson. Here Be
Web Proxies. In Proc. PAM, 2014.

[43] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and
S. Venkataraman. Identifying diverse usage behaviors of
smartphone apps. In Proc. of IMC, 2011.

[44] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and
R. Govindan. Investigating transparent web proxies in
cellular networks. In Proc. PAM, 2015.

[45] K. Zarifis, T. Flach, S. Nori, D. Choffnes, R. Govindan,
E. Katz-Bassett, Z. M. Mao, and M. Welsh. Diagnosing path
inflation of mobile client traffic. In PAM, 2013.

14

