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ABSTRACT

Mobile Internet availability, performance and reliability have re-
mained stubbornly opaque since the rise of cellular data access.
Conducting network measurements can give us insight into user-
perceived network conditions, but doing so requires careful con-
sideration of device state and efficient use of scarce resources.
Existing approaches address these concerns in ad-hoc ways.

In this work we propose Mobilyzer, a platform for conducting
mobile network measurement experiments in a principled manner.
Our system is designed around three key principles: network mea-
surements from mobile devices require tightly controlled access to
the network interface to provide isolation; these measurements can
be performed efficiently using a global view of available device
resources and experiments; and distributing the platform as a
library to existing apps provides the incentives and low barrier to
adoption necessary for large-scale deployments. We describe our
current design and implementation, and illustrate how it provides
measurement isolation for applications, efficiently manages mea-
surement experiments and enables a new class of experiments for
the mobile environment.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Measurement techniques, Perfor-
mance attributes]; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms

Design, Measurement, Performance

Keywords

Measurement Tool; Cellular Networks; Network Performance;
Video; Mobile Web

1. INTRODUCTION

Given the tremendous growth in cellular data traffic, it is in-
creasingly important to improve the availability, performance and
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reliability of the mobile Internet. To adequately address these chal-
lenges, we ideally would be able to collect network measurement
data from any mobile device on any network at any time. With this
information, users could evaluate the service they are paying for,
carriers could study the factors impacting performance and detect
problems causing degradation, and application developers could
tune and improve their service. Many of these optimizations can
be performed dynamically when data are available in real time.

Despite a need for performance improvement and policy trans-
parency in this space [27,/45], researchers currently still struggle
to measure, analyze and optimize mobile networks. Mobile In-
ternet performance characterization is a challenging problem due
to a wide variety of factors that interact and jointly affect user
experience. For example, the performance that a user receives
from an application can depend on the device’s available hardware
resources, radio’s network state, the network access technology
used, contention for the wireless medium, distance from cell tow-
ers, session initiation overhead, congestion at various gateways and
the overhead of executing code at the communicating endpoints.
Further, this performance can change over time and as the user
moves with the mobile device. Other challenges include resource
constraints (data and power) on mobile platforms in addition to
interference affecting measurements.

This problem has not gone unnoticed by researchers, operators
and providers. A number of small testbeds and user studies have
enabled progress in the face of these challenges [|13}16}221|35\/60],
but with limited scope, duration, coverage and generality. We argue
that previous work suffers from three key limitations that hamper
their success. First, these individual solutions do not scale: each
individual app or measurement platform is inherently limited to the
population of participating users running a single piece of software.
Second, each solution is inconsistent and inflexible in the set of
network measurements it supports and the contextual information
describing the experimental environment, making it difficult to
ensure scientific rigor and to merge disparate datasets. Third,
these solutions are uncoordinated in how they conduct network
measurements: multiple apps can wastefully measure the same
property independently or, worse, interfere with each other by
running measurements at the same time from the same device.

Instead of proliferating apps that conduct independent network
measurements in inconsistent ways, we argue that there should be
a common measurement service that apps include in their code. To-
ward this goal, we designed and built Mobilyzer, a unified platform
for conducting network measurements in the mobile environment.
Our system is designed around three key principles:

1. Measurement isolation: Network measurements from mo-
bile devices require tightly controlled access to the network



interface to provide isolation from competing flows that
impact measurement results.

2. Global coordination: Uncoordinated measurements from
individual devices have limited scalability and effectiveness,
so we provide a global view of available devices and their
resources as a first-class service to support efficient and
flexible measurements without overloading any device or
network.

3. Incentives for researchers and developers: Instead of fo-
cusing on a single “killer app” to obtain a large user base,
we distribute the platform as a library to include in any
new or existing app. Developers and researchers who write
apps needing network measurement benefit from reduced
operational cost and coding/debugging effort when using our
library, and are given network measurement resources across
all Mobilyzer devices in proportion to the number of users
they convince to install their Mobilyzer-enabled apps.

This paper answers key questions of how to (1) design a system that
efficiently provides controllable and accurate network measure-
ments in the mobile environment, and (2) leverage crowdsourcing
to enable measurement studies previously infeasible in mobile
networks.

Mobilyzer provides an API for issuing network measurements
using a standard suite of tools, and manages measurement deploy-
ment and data collection from participating devices. Each device
runs a measurement scheduler that receives measurement requests
and gives experiments explicit control over the context in which a
measurement runs. A cloud-based global manager dynamically de-
ploys measurement experiments to devices according to available
resources, device properties and prior measurement results.

Mobilyzer is currently deployed as a library that can be included
in Android apps, and a cloud-based Google App Engine service for
managing measurements across participating devices. Mobilyzer
supports standard implementations of useful measurement prim-
itives such as ping, traceroute, DNS lookups, HTTP GET, TCP
throughput, and the like. These rich set of measurement primitives
support experiments traditionally popular in fixed-line networks,
such as mapping Internet paths (via traceroute), measuring and
comparing performance for different destinations, and understand-
ing broadband availability. We also support advanced application-
layer and cellular-specific measurements, such as inferring RRC
timers, measuring Video QoE, and breaking down Web page load
time into its constituent dominant components.

Our design supports a constrained form of programmable mea-
surements: an experiment may consist of sequential and/or concur-
rent measurements, where the execution of subsequent measure-
ments can depend on the results of prior results and contextual
information (e.g., signal strength or location). We demonstrate the
flexibility of these compound measurements using several experi-
ments as case studies. For instance, we use this feature to trigger
diagnosis measurements when anomalies in network performance
are detected, or when we predict that a handover might occur.

We evaluate our deployed system in terms of our design goals.
We demonstrate that it effectively provides measurement isola-
tion, and failure to do so can lead to unpredictable and large
measurement errors. Further, we show that Mobilyzer manages
measurement scheduling efficiently, adapts to available resources
in the system, is easy to use, and reduces development effort for
measurement tasks.

We further evaluate our system in terms of new measurement
studies that it enables, using Mobilyzer’s support for coordinated

measurements among large numbers of vantage points to evaluate
the performance of Internet-scale systems. We use Mobilyzer
to identify and diagnose cases of CDN inefficiency, characterize
and decompose page load time delays for Web browsing, and
evaluate alternative video bitrate adaptation schemes in the mobile
environment. For example, we find that (1) poor CDN replica
selection adds 100 ms or more latency in 10% of our measurements,
(2) limited mobile CPU power is a critical bottleneck in Web page
load times (typically between 40-50% of load times) and doubling
CPU speed can reduce load times by half, and (3) buffer-based
adaptive video streaming improves the average delivered bitrate by
50% compared to commonly used capacity-based adaptation for
low bandwidth clients.

2. BACKGROUND AND RELATED WORK

A variety of existing approaches attempt to shed light on mobile
networks, but each exhibits limitations that we address with our
work.

Existing research platforms. Our work shares many of the
same goals of successful testbeds such as PlanetLab [47], RIPE
Atlas [52], and BISMark [63], and our work uses M-Lab [38]]
servers as targets for many measurement tests. These are general-
purpose experimentation platforms that require deployment of in-
frastructure and do not operate in the mobile environment. These
systems are insufficient alone for understanding mobile networks
because mobile networks generally use firewall/NATs [66]. We
also share goals with Dasu [55], but differ fundamentally in that
properly characterizing network performance in mobile environ-
ment requires different strategies than in the wired/broadband en-
vironment due to scarce resources and measurement interference.
Seattle [20] is a general-purpose platform that supports deploying
code on Android devices, and it shares many goals with Mobilyzer.
It does not provide network measurement isolation, but many of
its device management and security features can be integrated into
Mobilyzer.

View from operators. Operators and manufacturers such as AT&T
and Alcatel-Lucent have deployed in-network monitoring devices
that passively capture a detailed view of network flows traversing
their mobile infrastructure [18|[24]. Several studies use these
passive measurements to understand network traffic generated by
subscriber devices, with important applications to traffic engi-
neering, performance characterization and security [1828}|37.{49|
531164,|68]. However, this approach does not allow the carrier
to understand the performance experienced at the mobile device.
For example, when the throughput for a network flow suddenly
changes, it is difficult to infer from passive measurements alone
whether it is due to wireless congestion, signal strength, and/or
simply normal application behavior.

Further, most interesting behavior occurs at or near the edge
of mobile networks, making an infrastructure-based deployment
costly. For example, Xu et al. point out that monitors located near
a cellular provider’s core cannot account for detailed user mobility,
and adding the infrastructure to support these measurements would
require a deployment at least two orders of magnitude larger [67].
Existing measurement apps. Motivating the need for a mobile
measurement library, several academic, governmental and com-
mercial mobile performance measurement tools have been released
recently. The FCC released a network measurement app [27]
to characterize mobile broadband in the US but the system is
closed and data is not publicly available. Several commercial apps
measure mobile Internet performance by collecting measurements
such as ping latency and throughput [21}/441/61]. However, because
the source code is closed, the methodology is under-specified,



and the datasets tightly controlled, it is difficult for the research
community and end-users to draw sound conclusions. Further,
these tests are generated on-demand by end-users, creating a strong
selection bias in the data, as users may be more likely to run tests
when they experience problems.

A number of research projects use apps to gather network mea-
surements from hundreds or thousands of mobile devices [31}|36
40,41}, 148,157-59]. Such measurements reveal information not
visible from passive in-network measurements, such as radio state,
signal strength and the interaction between content providers and
network infrastructure [34159//67./69]. Further, these measurements
reveal information across carriers, allowing researchers to under-
stand different ISP network policies and performance [[66]. Such
one-off studies provide a useful snapshot of mobile networks, but
they do not support longitudinal studies that inform how mobile
network performance, reliability and policy changes over time,
nor do they support targeted measurements that are required to
understand the underlying reasons for observed network behavior.

Each of the above projects uses a separate codebase, a different
set of collected contextual information and different privacy/data
sharing policies. As such, experiments are conducted in an ad-
hoc manner, with limited or no ability to compare and combine
measurements from each limited deployment. As an example
pitfall from the current approach, consider the case of interpret-
ing the result of a simple ping measurement. Because mobile
device radios enter a low power state during idle periods, a ping
measurement that wakes the radio (and experiences additional
delay during the wakeup period) can affect a subsequent ping
measurement that occurs while the radio is in full power mode.
Without contextual information, a researcher might falsely attribute
network delays to the carrier instead of the device. Worse, if there
are two measurement apps running on the same device, one app’s
measurements can interfere with the other’s.

Our work is also motivated by other efforts in building mea-
surement libraries, especially on mobile platforms. For example,
Insight [46] and ApplInsight [51|] offer platforms for instrumenting
and measuring application performance, rather than network mea-
surements.

3. GOALS

The goal of Mobilyzer is to provide a scalable platform for
conducting meaningful network measurements in the mobile envi-
ronment. This is the first open-source platforni’|to support mobile
measurements in the form of a library. It is designed to achieve:

3.1 Standard, Easy-to-use Measurements

There is a tension between arbitrary flexibility and standard-
ization in a platform for network measurements. While allowing
experimenters to execute arbitrary code within a sandbox provides
flexibility, a lack of standards means that these experiments are
difficult to incorporate into existing and future datasets. In Mobi-
lyzer, we opt for standard measurements, facilitating comparative
and longitudinal studies atop our platform (see @

3.2 Measurement Isolation

The mobile environment poses unique challenges for control-
ling how network measurements are isolated from each other,
and from network traffic generated by other apps and services.
Mobilyzer accounts for these properties and gives experimenters
explicit control over device state and concurrent network activity

'Mobilyzer source code is publicly available at http://mobilyzer-
project.mobi/
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Figure 1: Mobilyzer architecture (shaded region). Apps
(top) include the Mobilyzer library, which provides an API to
issue network measurements, and a scheduler service (middle)
that provides measurement management and isolation. The
scheduler communicates with a global manager (bottom) to fetch
measurement requests and report measurement results.

during measurement. Mobilyzer achieves the goal of measurement
isolation via a local measurement scheduler (see §4.3).

3.3 Global Coordination

Data quota and power are scarce resources for mobile networks,
requiring that researchers use more principled approaches than
“shotgun” measurement. With a global view of available net-
work resources and the ability to coordinate measurements from
multiple devices, we can coalesce redundant measurements and
allow researchers to specify targeted experiments that use device
resources efficiently (see §4.4). For instance, coordination among
the Mobilyzer’s clients provides opportunities to (1) evaluate the
performance of Internet-scale services and (2) schedule measure-
ments in an interactive fashion, where a set of measurements
scheduled on one device may depend on the results Mobilyzer
receives from other devices.

3.4 Incentives for Adoption

As a crowdsourcing approach, Mobilyzer requires a crowd of
mobile users to adopt our platform. We argue that no single app
will provide the necessary crowd. Instead, we opt for a “bring
your own app” deployment model, where researchers/developers
develop Mobilyzer-enabled apps with user incentives.

We propose the following incentives for researchers and devel-
opers to use our library.

e [ncentive for researchers. The incentive for researchers to
develop Mobilyzer-enabled apps is that they can conduct mea-
surements on any of the devices in the system (including those
not running their app), with measurement quota proportional to
the number of devices their app(s) bring to the system. This
is analogous to the PlanetLab and RIPE Atlas models, except
using a software (instead of hardware) deployment.

o [ncentive for developers. One incentive for adopting Mobilyzer
is reduced operational costs. As an example, an app that pro-
vides “speed tests” of peak transfer rates can incur significant
bandwidth charges for the servers hosting transferred content.
Our system uses resources donated by M-Lab, and this was the
main reason that MySpeedTest adopted our tool.

A second incentive is reduced coding/debugging effort. Sup-
porting any app that requires network measurement (and pos-



| Measurement Type | Supported Measurements

| Usage

DNS lookups, ping, traceroute,

Supports experiments traditionally popular in fixed-line
networks, such as mapping Internet paths, measuring and

Basic HTTP GET, TCP throughput, . . L .
comparing performance for different destinations and carriers,
and UDP burst and understanding broadband availability
Compose d Sequential and parallel Combines multiple measurements programmatically to support

new measurements, such as diagnosis measurements

RRC timer inference, Video QoE,

Complex .
p and Page load time measurements

Supports application-layer and cellular-specific active
measurements

Table 1: Measurement types supported by Mobilyzer.

sibly access to measurements from multiple devices) entails
writing and maintaining software for measurement and data
storage/retrieval. Our experience is that correct implementa-
tions of such functionality can take man-months to man-years
of work. We provide this functionality out-of-the-box with
Mobilyzer.

We also consider altruism and relationships with developers as
incentives. For example, the Insight [46|] project successfully
convinced developers of a popular app to instrument and share
data with researchers. Similarly, altruism has attracted users to
support platforms such as RIPE Atlas and DIMES.

Comparison with ad libraries. Our library-based deployment
model is inspired in part from the successful adoption of advertising
(ad) libraries in mobile apps. We believe that ad libraries are
successful in large part because they have direct incentives for
developers (payment for click-throughs) and a limited impact on
apps. Our direct incentive for developers is that they “earn”
measurement resources proportional to the size of the Mobilyzer-
enabled app deployment. This is analogous to the RIPE Atlas credit
model, which has helped grow a hardware-based platform to more
than 7,000 active hosts. Like ad libraries, which periodically pull
advertisements for display, Mobilyzer primarily uses a pull-based
model to fetch measurements.

However, ad libraries and Mobilyzer differ from the perspec-
tive of privacy and resource usage. Ad libraries can be used to
track arbitrary information about users, often without any explicit
privacy policy or user awareness. Mobilyzer is explicit about the
data it collects, was designed with privacy concerns in mind, and
requires explicit user consent. Further, it is unclear if or how ad
libraries limit the resources consumed by their service. Mobilyzer
provides controllable, limited impact on apps by enforcing hard
limits on resource consumption (in terms of energy and data quota)
and avoiding interference with network traffic from other apps.
While Mobilyzer provides direct incentives for developers in terms
of measurement resources, unlike ad libraries it will not directly
subsidize app development costs.

3.5 Nongoals

First, we do not provide a “PlanetLab for mobile”; i.e., we do not
provide a platform for deploying arbitrary distributed system code
on mobile devices. Instead, we focus on the more constrained prob-
lem of providing a platform for principled network measurements
in lieu of one-off, nonstandard measurement studies. Second,
we do not provide a service for arbitrary data-collection from
mobile devices; rather, we focus on active and passive network
measurements annotated with anonymized contextual information.
Collecting arbitrary data from users is a potential privacy risk that
we avoid in Mobilyzer. Third, we do not propose any specific
incentives for device owners to adopt Mobilyzer-enabled apps.
Rather, we urge experimenters to either develop apps with user

incentives in mind, or convince maintainers of existing popular app
codebases to include our library. Currently, there are hundreds of
apps [60] that simply do network measurements (e.g., speed tests) or
network diagnosis (signal strength/coverage maps) and have large
user bases. We believe this is strong evidence that users will install
a Mobilyzer-enabled tool as long as it is useful. We also believe
that Mobilyzer’s limited data collection is not a strong impediment
to user adoption, as ad libraries are known to collect more intrusive
information with no known effect on adoption.

4. DESIGN AND IMPLEMENTATION

4.1 Overview

Figure [T] provides a high-level view of the Mobilyzer platform.
It consists of an app library, a local measurement scheduler, and a
cloud-based global manager.
Measurement Library. Mobilyzer is designed to be easy to use
and integrate into existing apps, while providing incentives for
doing so. It is deployed to apps as a library with a well-defined
API for issuing/controlling measurements and gathering results
locally. This facilitates development of new apps that use network
measurements. For example, an app that includes our library can
issue a measurement and retrieve results with under 10 lines of
code. Existing apps can incorporate our library to take advantage
of our validated measurement tools and server-side infrastructure.
Local measurement scheduler. Mobilyzer achieves the goal of
measurement isolation via the local measurement scheduler. The
scheduler listens for measurement requests and ensures that any
submitted measurements are conducted in the intended environ-
ment (e.g., radio state, state of other apps using the network,
and contextual information such as location, signal strength and
carrier). Regardless of how many apps on a device use it, Mobilyzer
ensures that there is exactly one scheduler running. If apps with
multiple versions of the scheduler are present, the latest version is
guaranteed to be used. The scheduler enforces user-specified limits
on resource (data/power) consumption.
Global manager. The Mobilyzer global manager provides co-
ordination for the following services: dynamic measurement de-
ployment, resource cap enforcement, and data collection. This
support is quite unique to our platform, as global centralized
coordination improves the design of mobile experiments despite
limited resources. Experimenters use the global manager to de-
ploy measurement experiments to devices. For example, an ex-
periment may contain a number of network measurements that
should be conditionally deployed and executed according to device
properties. The global manager deploys these measurements to
devices based on device information reported periodically, and
ensures that measurements are not deployed to devices that have
exceeded user-specified resource caps. The manager maintains
a datastore of anonymized data collected from all devices and



API Function

| Description |

MeasurementTask createTask (TaskType type,

Date startTime, Date endTime, double intervalSec,
long count, long priority, Map<String,String> params)

Create a task with the specified input parameters
including task execution frequency task priority, etc.

String submitTask ( MeasurementTask task )

Submit the task to the scheduler and return taskId.

void cancelTask (String taskId)

Cancel the submitted task, only allowed by
the application that created this task.

void setBatteryThreshold(int threshold)

Set the battery threshold for check-in and running
the global manager scheduled tasks.

void setCheckinInterval (long interval)

Set how frequently the scheduler checks in.

void setDataUsage (DataUsageProfile profile)

Set a limit for Mobilyzer’s cellular data usage.

Table 2: Mobilyzer key API functions to support issuing and controlling measurement tasks.

makes this available for interactive measurement experiments and
for offline analysis. The data collection and scheduling support
at the global manager enable dynamically triggered measurements
based on observed network behavior, achieving a feedback loop of
measurement, analysis, and updated measurements.

4.2 Measurement Library and API

Design. A key design principle for Mobilyzer is that the platform
should remove barriers to widespread adoption so that it facilitates
a large-scale deployment. We chose to implement Mobilyzer as a
network measurement library that app developers include in their
code. This code provides an API for issuing measurements using
a standard suite of tools (Table Q), and a device-wide measurement
scheduler.

The measurement model supported by Mobilyzer represents a
trade-off between complete flexibility to run arbitrary code and
complete safety in that all resources consumed by a measurement
can be predicted in advance. Specifically, Mobilyzer supports a
small set of commonly used measurement primitives, e.g., ping,
traceroute, DNS lookup, HTTP get and throughput tests. These
measurements can be performed independently in isolation, or they
can be chained (do a DNS lookup for google.com, then ping the
IP address) or executed in parallel (e.g., ping google.com during a
TCP throughput test) in arbitrary ways.

Using this model, the amount of data and power consumed by
each task (simple or complex) is predictable with few exceptions
(e.g., downloading an arbitrary Web page) that can be mitigated via
scheduler-enforced constraints on the data and power consumption
of a task. Like Dasu, this approach avoids concerns from running
arbitrary code; however, unlike Dasu this allows us to strictly
control resource consumption (which is not a primary goal of
Dasu).

Implementation. The Mobilyzer measurement library is imple-
mented as Android code that is added by reference to an existing
app’s source code. Mobilyzer supports three types of measure-
ments: Basic, Composed, and Complex Measurements (Table |Z])
Basic Measurements Supported. Mobilyzer supports both pas-
sive, contextual measurements and active network measurements.
Currently, the active measurements supported are DNS lookups,
ping, traceroute, HTTP GET, and a TCP throughput and UDP
burst test. For each measurement task, users can specify general
task parameters (e.g., the time at which to run) and task specific
parameters (e.g., TTL value for ping measurement). Further, each
task can specify a pre-condition which must evaluate to true before
a task can be executed (e.g., location is Boston, signal strength is
greater than 50, network type is cellular).

Mobilyzer also collects passive measurements on both network
performance and device state, and associates a set of passive
measurements with every active test run. It collects the sig-

nal strength (RSSI values) and the device’s battery level, battery
charging state, coarse-grained location, the network technology,
the total number of bytes and packets sent and received by the
device, as well as static context information such as the carrier,
OS, and support for IPv6. Our set of measurements and monitored
device properties do not require special privileges; however, we can
support measurements that require rooted phones (if available).
Measurement composition. Mobilyzer supports combining multi-
ple measurements into a single experiment, where sets of mea-
surement tasks can run sequentially and/or in parallel. Further,
the result of each sequential task can be used as a pre-condition
for executing a subsequent task. This feature improves experiment
flexibility—we use this feature to trigger diagnosis measurements
in response to detecting anomalies in network performance. Fig-
ure[2]shows how this feature can help in building a simple diagnosis
task, where the client will run traceroute, if latency and signal
strength is above a threshold.

Supporting complex measurements. Mobilyzer is designed to pro-
vide extensible support for application-layer and cellular-specific
measurements. These include inferring RRC timers, measuring
Video QoE, and breaking down Web page load time into its con-
stituent dominant components. Further, our system can incorporate
new complex measurements as they become available. Each new
task must have predictable power consumption, data usage, and
duration, so that Mobilyzer can ensure that the measurement task
will not exceed a device’s battery and data usage limits.

We now describe how long-running, complex tasks motivate
the need for additional scheduler features to ensure measurements
complete successfully. Mobile devices change between different
power states, called RRC states, in response to network traffic [26|
33]]. The device’s RRC state is not exposed to the OS due to a lack
of an open API, so identifying how long devices stay in each power
state entails sending a large number of individual packets with long
gaps between them, and inferring power states based on observed
packet delivery delays.

This type of measurement poses two key challenges. First, it is
a long-running, low-rate measurement that should run only when
connected to a cellular network. With no other tasks running
on the device, the test can easily take half an hour. Given our
pre-emptive priority scheduler (described in the next section), the
RRC inference task will either block other tasks for long durations
or will be constantly interrupted by higher priority tasks. The
latter situation can lead to a large volume of wasted measurement
bandwidth (as interrupted measurements must be discarded and
restarted), and with sufficient interruptions the RRC task may not
have a chance to complete.

Second, this task requires complete isolation from other network
activity. Any concurrent traffic will alter the results of this test by



changing the radio power state. To detect whether the network iso-
lation property holds, Mobilyzer collects information about device-
wide background traffic through the proc file system and discards
results taken when there is background traffic.

These challenges motivate the following approach for the RRC
state task. First, it runs with low priority so it does not block other
measurements for unreasonable periods. Second, because it may
be frequently pre-empted or unable to run due to the device using
WiFi, we support suspending and resuming this task. Third, we
upload partial measurement results when the task fails to complete,
so the data collected is not wasted. We used this measurement to
understand the impact of RRC states on latency and packet loss for
various network protocols and applications, and found the presence
of unexpected application-layer delays [54].

More generally, we include these features for any task that
logically supports suspend, resume and partial measurements. For
example, traceroute includes these features but atomic measure-
ments such as ping do not.

4.3 Local Measurement Scheduler

Design. The local measurement scheduler is a service running
on a device that manages the execution of measurement tasks.
It can be implemented in the operating system or run as a user-
level background service. The scheduler provides a measurement
execution environment that can enforce network isolation from
other measurements and apps running on the device. It also
enforces resource-usage, priority, and fairness constraints.

Task priorities. The scheduler supports measurement task priorities
with pre-emption. It executes tasks with the highest priority first
and will pre-empt ongoing measurements if they are of lower
priority. Certain measurement tasks cannot produce correct results
if pre-empted (e.g., a ping task pre-empted between sending an
echo request and receiving a response), so pre-emption will lead to
wasted measurement. To balance the trade-off between this waste
and scheduler responsiveness to high-priority tasks, the scheduler
waits for a short time (e.g., one second) before pre-empting a
measurement.

This is sufficient time for a ping measurement to complete, but
not necessarily for other tasks (e.g., traceroute). To minimize
wasted measurement resources for pre-empted tasks, we define
a pause () method that signals to measurement tasks that they
should save their state due to an imminent pre-emption. For
traceroute, this means that the traceroute measurement can save
its current progress and continue to measure a path once it is
rescheduled.

Not all measurements can (or should) be pre-emptible. In

addition to the traceroute task mentioned above, we have also
implemented a pre-emptible long-running task for inferring RRC
state timers on mobile devices [26}/33]. Measurements like DNS
lookup and ping are not pre-emptible (i.e., they are killed at pre-
emption time) because they are short-lived tasks with minimal (or
no) state to cache. In general, network measurement tasks (e.g.,
throughput measurement) to characterize time-varying properties
of the network cannot benefit from saved state when pre-empted;
this is in contrast to measurements of more stable properties (e.g.,
RRC state machine and NAT policies).
Traffic Interference. To avoid inference from (and with) traffic
from other apps, Mobilyzer monitors traffic generated by other apps
(using the TrafficStats API in Android) and pauses/kills measure-
ment tasks that are subject to interference. For example, the TCP
throughput task, which attempts to saturate bandwidth to measure
throughput, will be stopped if scheduler detects any concurrent
network traffic; failing to do so may adversely affect other applica-
tions’ performance and lead to inconclusive measurement results.

Resource constraints and fairness. The scheduler accounts for how
much data and power is consumed by network measurements and
ensures that they stay within user-specified limits. Users specify
hard limits on how much data Mobilyzer consume, and at what
battery level the library should stop conducting measurements.

We enforce limits as follows.

e The scheduler does not execute a task if its data or energy
consumption estimates exceed available resources. Such tasks
are suspended until the constrained resource(s) is replenished.
For energy, this happens when a device is recharged; for data
plans, this is typically done according to the billing cycle.

e The scheduler monitors data and power consumption for on-
going measurements, and terminates a task if it consumes more
data than expected, and/or exceeds a device’s data/power quota.
Because measurement tasks cannot execute arbitrary code, we
can always predict in advance the maximum resources they may
consume, and use that as a conservative estimate for scheduling
purposes.

e To ensure liveness and fair access to resources, the scheduler
enforces an upper bound on task duration by terminating exe-
cution of a measurement task exceeding that limit. This limit
must be specified in the task description.

All measurement tasks generated by apps running on a device are
assigned the same high priority value. To ensure fairness among
multiple apps on the same device competing for resources, we
ensure that each app receives an equal share of the constrained
resource.

Implementation. The scheduler is currently implemented using
an Android service, which guarantees that at most one scheduler
is present regardless of the number of Mobilyzer-enabled apps
running on a device. The library communicates with the scheduler
service via IPC calls.

Forward compatibility. Our library-based deployment model means
that different Mobilyzer-enabled apps running on the same device
may use different versions of the measurement library and sched-
uler. We want to ensure that all apps on the device bind to the
newest version of the scheduler service as soon as it is installed by
an app. A key challenge for providing this functionality is that by
default on Android, apps will bind only to the scheduler of the app
that is first installed, which is unlikely to be the latest version.

We address this as follows. First, we exploit the Android priority
tag in the bind Intent when declaring the scheduler in the manifest
file. The scheduler with the highest priority is bound if there is no
other bound scheduler, so we increment the priority value with each
new Mobilyzer version. However, if an older scheduler has already
been bound, apps bound to an older version do not switch until the
device is rebooted. To address this, we deliver the scheduler version
information via the start Intent. When the scheduler receives a
start Intent, it compares its version with the one in the intent and
terminates if it sees a newer scheduler version.

4.4 Global Manager

Design. The Mobilyzer manager maintains a global view of mea-
surement resources, efficiently dispatches experiment tasks to avail-
able devices and coordinates measurements from multiple devices
to meet various experiment dependencies. Atop the manager is a
Web interface that allows experimenters to specify measurement
experiments that are deployed to devices.

Specifically, researchers can submit a measurement schedule,
along with information about the properties of devices that should
participate in the experiment (e.g., location, device type, mobile
provider). Devices periodically check in with the manager and
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seqTask.setSubTasks ([pingTask, tracerouteTask])
api.submitTask (segTask) ;

Figure 2: Using sequential tasks to build a simple diagnosis task.

receive a list of experiments to run. When complete, devices report
the results of the measurements to the manager.

The manager ensures: (i) no experiment uses more than its fair

share of available measurement capacity across Mobilyzer devices;
(i1) experiments are scheduled in a way that maximizes the like-
lihood that the targeted devices will complete their measurements
during the period of interest; and (iii) it enforces limits that prevent
harm to the network or hosts (e.g., via a DDoS).
Fairness under contention. In a successful Mobilyzer deployment,
there are likely to be cases where measurement requests exceed
available measurement resources. In periods of contention, we
must dispatch measurement tasks according to some fairness met-
ric.

We assign measurement tasks to devices such that the frac-
tion of assigned tasks for an experimenter is proportional to the
number of measurement-enabled devices that the experimenter has
contributed to Mobilyzer. When measurement demand from an
experimenter is lower than their fair share, we backfill available
resources from remaining pending tasks to ensure that our system
is work conserving. Similar to previous work [19,42], we can
use an auction-based approach as a building block to provide such
fairness.

Availability prediction. Available devices in Mobilyzer are subject
to high churn and mobility, meaning that simply deploying an ex-
periment to some random fraction of devices may lead to a low rate
of successful measurements. To improve this, the global manager
incorporates knowledge of experiment dependencies, prediction
for resource availability and accounting for failures due to issues
such as disconnections and loss of power. For example, we use
prediction to prevent wasted measurement resources by preventing
experiments from being dispatched if they are likely to fail (e.g.,
due to unavailable measurement quota or due to measurement
preconditions not being met on the device).

Other features. Mobilyzer supports a variety of other features,
described in detail in the technical report [43]]. Briefly, we support
live measurement experiments, which allows researchers to specify
measurement experiments that are driven by results from ongoing
measurements; i.e., experiments that cannot be specified a priori
(demonstrated in §5.4.T). The global manager can prevent harm to
the network and to other hosts by accounting for all measurement
activity in the system and ensure that no host or network is over-
loaded by measurement traffic. Last, users can access their data by
logging into our dashboard [7]], and collected data is anonymized
and publicly accessible online [[8].

Implementation. The Mobilyzer manager is currently imple-
mented using a Google App Engine (GAE) instance, providing

a highly scalable platform for managing thousands or millions of
devices. The manager currently uses a pull model for experiment
deployment, where devices check in with the manager periodically
to retrieve updated experiments and to update their contextual
information (coarse location, remaining battery, access technol-
ogy). We also support Google Cloud Messaging (GCM) services
to provide a push-based model for experiments with tighter timing
constraints, which is subject to the same resource constraints as
pull-based measurements.

Experimenters currently can specify simple measurement sched-
ules using an interface that permits control over measurement
parameters, experiment durations and periodicity. We have also
developed several dynamic measurement experiments as described
in Section 5.4] where the measurements issued to a device depend
on the results of prior measurements (from potentially many other
devices).

The manager deploys measurements based on contextual infor-
mation gathered from devices. For example, the manager will re-
duce the measurement rate for periodic tasks that would otherwise
exceed device quota. Similarly, measurement tasks for devices in a
specific geographic region are not deployed to devices outside that
region.

4.5 Security

Security is paramount in any large, controllable distributed sys-
tem. Our design addresses the following threat model: an attacker
who subverts the system by taking over our control channel, hack-
ing our global manager, participating in the system to launch as
DDoS, or control/drain resources on devices. We address these
attacks as follows:

e Subverting the control channel: We use Google App Engine
(GAE) to control our devices, which relies on HTTPS to com-
municate with the trusted GAE hosts. Subverting the control
channel requires subverting the PKI for Google certificates,
which is difficult.

e Subverting the GAE controller: We use Google account
authentication to control access to our global manager and limit
access only to authorized users. This does not address account
compromise, which we cannot rule out. However, we monitor
system usage, which should allow us to react quickly should
this occur.

o Insider attack: A malicious developer could try to use our sys-
tem to launch “measurements” that actually consist of a DDoS
attack or resource drain. To prevent the former, we account for
all measurement requests scheduled either by check-in or push-



[ Measurement App | Measurement LoC |

FCC SpeedTest [27] 12550
MySpeedTest [40] 9545
Mobiperf 8976

Table 3: Lines of code (LoC) for open-source measurement apps.
By integrating Mobilyzer into existing apps, developers can save
thousands of lines of code.

based mechanism and conducted by all participating devices,
and place limits on how many measurements can target a given
domain or network. To prevent the latter, we use the hard limits
on resource constraints mentioned above.

e App compromise: An attacker may wish to take control of
apps/devices by executing code that compromises the app/de-
vice OS. We support executing only measurements we validate,
limiting the attack surface for compromise. We further rely on
the Android/Java sandboxes to prevent OS compromise.

S. EVALUATION

We now evaluate Mobilyzer in terms of deployment experience,
performance, and applications.

5.1 Deployment Experience

One key advantage of Mobilyzer is that apps requiring network
measurements are easier to write and maintain. Our platform
provides validated measurement code, prevents interference from
other Mobilyzer-enabled apps, collects and stores measurement
data and utilizes existing infrastructure (via M-Lab) for bandwidth
testing. We believe that by separating measurement management
and data collection code from app development, Mobilyzer helps
researchers focus on interesting measurement experiments and
compelling incentives for user adoption.

Table 3] lists the lines of code (LoC) used for network measure-
ments in three popular measurement apps. In Mobiperf, 80% of
the code was for measurement. Using a library-based model, we
simplify the app codebase, making it easier to focus on Ul and
other elements to encourage user adoption. With Mobilyzer one
can issue a measurement task and retrieve the results with fewer
than 10 LoC.

Mobilyzer has been adopted by the developers of MySpeedTest,
a throughput-testing app. The experience from the main developer
was overall quite positive, and identified cases where instructions
for use were unclear. While it took several e-mail exchanges to
clarify these issues, the developer reported that writing the code to
port MySpeedTest to Mobilyzer took “about an hour or less” and
they have used our library since May, 2014. We are currently in
discussions with other researchers about integrating Mobilyzer into
their apps.

5.2 Measurement Isolation

An important feature of Mobilyzer is that it schedules mea-
surements to provide applications with control over if and when
measurements are run in isolation. We now use this feature to
demonstrate the value that isolation brings. In particular, we use a
compound measurement task that consists of a TCP throughput test
run in parallel with a ping measurement. We vary the start time for
the ping measurement such that it occurs before, during, and after
the throughput test and plot the results. We also control whether
the cellular radio is in a low-power state before measurement. Each
experiment is repeated 40 times; we plot a CDF of ping latencies
for each configuration. We omit throughput results because they
are unaffected by ping measurement cross traffic.
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Figure 3: Impact of throughput measurements (grouped into time
periods) and radio state on measured RTT. Results vary with
radio state, and upstream or downstream cross-traffic with varying
throughput. Mobilyzer provides strict control over these kinds of
dependencies.

Figure3]shows that ping measurements are significantly affected
by cross traffic, and the difference in latency compared to the case
with no interference can be hundreds of milliseconds or seconds.
The additional delay, presumably from queuing behind the TCP
flow from the throughput test, also varies depending on how much
cross traffic occurs. As a result, interference from cross traffic
essentially renders the latency measurement meaningless. Note
that the downlink interference is more severe likely due to higher
throughput (2.5 Mbps down vs. 0.35 Mbps uplink), which leads to
more queuing inside the network and on the device.

The figures also show differences in measured latencies when
the radio is active compared to when it is idle before measurement.
Similar to the above scenario, not accounting for this effect can
cause misleading or incorrect conclusions. With Mobilyzer, exper-
imenters can tightly control the impact of these sources of noise in
measurement experiments.

5.3 Microbenchmarks

This section presents results from controlled experiments eval-
uating Mobilyzer overhead in terms of measurement-scheduling
delay, power usage, and data consumption.

5.3.1 Scheduling Delays

The scheduling delay introduced by Mobilyzer consists of the
delay from using IPC (interprocess communication) between an
app and the scheduler, and the delay introduced by the scheduler.
As we show, these delays are reasonably low for all measurements
and under significant load.

The IPC delay (Fig. {4) is the sum of (i) the delay between when
the client submits a task and when the server receives it (IPC part I
in the figure), and (ii) the delay between when the scheduler sends
the result to the client, and the client receives it (IPC part II).

We use an HTC One (Android 4.1.1, using LTE) to run mea-
surement tasks for characterizing the IPC overhead. Each task
is run 100 times. Fig. [f] presents a CDF of the delay; for all
tasks, the maximum delay is below 100ms, while most delays are
within 20ms. These values match the performance analysis for IPC
latency using Intents [30]. Note that this delay affects the time
until a measurement runs but does not interfere with measurement
execution.
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Task Power consumption | Power consumption
under WiFi (mAh) under LTE (mAh)
DNS 0.03 (0.01) 0.09 (0.01)
HTTP 0.05 (0.01) 0.12 (0.01)
UDP (Down) 0.06 (0.02) 0.17 (0.02)
UDP (Up) 0.08 (0.03) 0.17 (0.04)
PING 0.21 (0.01) 0.52 (0.02)
TCP (Down) 0.1T (0.28) 2.88 (0.24)
TCP (Up) 1.33 (0.04) 2.36 (0.20)
Traceroute 0.75 (0.25) 2.34 (0.02)
Sum(unbatched) 3.51 (0.38) 8.66 (0.32)
Sum(batched) 3.75 (0.61) 5.06 (0.25)

Table 4: Power consumption of Mobilyzer: each cell lists the
average, then the standard deviation in parentheses.

Note that the IPC overhead increases when many tasks are
submitted back to back, due to the way Android implements Intent-
based IPC. Specifically, there are two IPCs for each Intent-based
IPC — one from sender to the Intent manager, and then one from
the manager to the receiver [30].

To test the impact of this, we submit bursts of 1, 10 and 20 tasks
with 15 ms between each burst. If several IPCs are sent to the
Intent manager at once, there may be a delay in redirecting them to
the receiving app. Fig. 5] shows the IPC overhead under high load
for the DNS task (other tasks exhibit a similar pattern). Although
larger burst sizes lead to longer delays, with a burst of 10 the delay
is mostly within 50 ms. For a burst of 20, over 90% are below 100
ms, which we believe is acceptable for scheduling measurement
tasks. It is unlikely that user-generated activity will create such a
large burst of measurements, so we do not expect these delays to
affect user-perceived responsiveness.

We similarly measure the scheduling delay introduced by Mobi-
lyzer, i.e., the delays in starting the measurement and sending the
result (schedule overhead part I and 1T in Fig. ). The scheduling
delay distribution for a single client is shown in Fig.[f] It is slightly
higher than the IPC overhead, but still on the order of tens of
milliseconds. Again, we believe this is acceptable for scheduling
and reporting results from measurement tasks.

5.3.2 Power Usage

We now estimate the power consumed by Mobilyzer. In general,
it is difficult to distinguish power consumption of our library from
the application that runs it. To address this, we measure the power
consumption of an app using the Mobilyzer service as it runs in
the background executing server scheduled measurement tasks and
compare it to power consumed by the same app before integrating
Mobilyzer, with the overall functionality kept the same.

We measure the power consumption of measurement tasks using
a Samsung Galaxy Note 3 as the test device, and a Monsoon power
monitor [9]] to measure the device power usage.We run each task
5 times with a 15-second delay between tasks to determine the
power drain in isolation (unbatched). All experiments are repeated
3 times to identify possible outliers, and we record the average
power consumption. Additionally, we run a batched task consisting
of all 8 tasks 5 times, and measure the power consumption during
the entire measurement period to better reflect that most tasks in
Mobilyzer run in batches. For comparison, we also sum the average
power consumption for all 8 tasks, denoted as Sum(unbatched)
based on individual experiments. Table[shows the results for WiFi
and LTE.

Of the unbatched experiments, we can see that the TCP through-
put test has the highest power consumption. This is consistent
with prior results showing that power drain is roughly linear with
the throughput and duration that the network interface is in a
high power state [[33]. The power drain from remaining tasks is
proportional to the measurement duration because their throughput
is low. Note that traceroute has higher power consumption under
LTE than under WiFi, since it sends a large number of ICMP
packets with an interval of roughly 0.5s. While on LTE, the device
will stay in the high power state between these packets.

For batched tasks, we found that on WiFi the power consumption
for batched and unbatched tasks are similar. However, on LTE
the total power consumption of the batched measurements is much
smaller than that of the sum of the individual measurements, by
41.5%. This is because of the tail energy effect on LTE, where
the device remains in a high power radio state for several seconds
after a network transmission. In each individual task, there is a
contribution from the tail time of an average of 48.2% to the total
energy consumed [33|]. When the tasks are batched, there is only
one tail time, demonstrating the effect of batching in saving energy
in cellular networks.

These microbenchmarks identify the energy for individual mea-
surements, but not the relative cost compared to other services
running on devices. We evaluate this using the built-in Android
battery consumption interface on a Samsung Galaxy S4 device
actively running a Mobilyzer-enabled app with a 250 MB monthly
measurement quota. We find that the power consumed by Mobi-
lyzer in this scenario is nearly identical to the Android OS itself,
with each comprising about 5% of the total energy drain. We
believe this power consumption to be reasonably low for most



users, and emphasize that Mobilyzer allows users to specify limits
on the maximum energy our measurements consume.

5.3.3 Data Usage

We now evaluate adaptive measurement scheduling in response
to per-device caps of Mobilyzer data consumption. Our system
consumes data quota from (i) fetching measurement requests from
the global manager, (ii) uploading measurement results, and (iii)
running the measurement tasks. The last category constitutes the
vast majority of data consumption, so we set the frequency of
periodic measurements according to each device’s data cap. We
now demonstrate how well this works in practice.

For this experiment, we monitor the data consumption on a HTC
One device by reading the proc files under /proc/
uid_stat/<app uid> once per minute to monitor the app-
specific data usage for Mobilyzer. Figure[l|shows Mobilyzer’s data
usage on a cellular network during 14 hours for a 250 MB and 50
MB data cap, along with the corresponding ideal data consumption.
The server adjusts the measurement frequency for tasks based on
estimates of the data consumed by each task and the device’s data
cap. Data is consumed at a slightly higher rate than expected, as the
server estimates are not precise. For more precise data consumption
control, a client-side data monitor measures all data consumed by
Mobilyzer and stops running server-scheduled tasks as soon as the
limit is reached.

5.4 Server Scheduling

The Mobilyzer global scheduler enables dynamic, interactive
measurement experiments where tasks assigned to devices vary in
response to results reported from prior measurements. We present
two applications of this feature: measuring the CDN redirection
effectiveness of major CDNs, and network diagnosis with adaptive
scheduling, which dynamically schedules diagnosis measurements
in response to observed performance issues.

5.4.1 CDN Redirection Effectiveness

In previous work [62], Su et al. used PlanetLab-based experi-
ments to show that CDNs typically send clients to replica servers
on low latency paths, instead of optimizing for factors such as
load balancing. This requires measuring paths not only to replica
servers returned by a DNS redirection, but also testing the latency
to other replica servers that could have been selected. Using a
dynamic measurement experiment, we repeat this study for the
mobile environment to test the extent to which this holds true.

Specifically, we select DNS names served by five large CDNs
(Akamai, LimeLight, Google, Amazon CloudFront, and EdgeCast)
and measure the latency to the servers that mobile clients are
directed toward via DNS lookups. In addition, we measure the
latency to servers (5 servers with lowest latency from the recent
device measurements and 5 randomly selected servers in distinct
/24 prefixes) that other devices are directed toward.

For each round of measurement, we find the delay difference
between the lowest-latency server and the one returned by the DNS
lookup to determine the quality of the mapping. In addition, we
sort the latencies to determine the rank of the server. For example,
if the server returned by the CDN is the second-fastest of ten, its
rank is 2.

We summarize our rank results in Figure [3| for 476 devices
which used either WiFi (860K measurements) or cellular (393K
measurements). Each data point represents the ranking result for
one round of measurement.

The figures show that CDNs do not pick the best server half
of the time, and as we show below, a this leads to a significant
performance penalty for many of our measurements. We calculate

the latency difference between the lowest-latency CDN replica and
the CDN-selected replica for the same devices in each round of
ping measurements. In more than 40% of cases, the latency to
the CDN-selected server is optimal. Figure [0 plots the latency
difference for cases where the CDN-selected replica is not optimal.
We find that for cellular users, 20% of the cases lead to a latency
difference of higher than 100ms, which is particularly bad for small
downloads common in Web pages. In the worst 10% of cases,
there is a noticeable difference between WiFi and cellular; for
some CDNs (e.g., Akamai and EdgeCast), the latency difference
for WiFi is 50 ms, compared to 500 ms for cellular. While we do not
identify the reason for each of these cases, previous work identifies
a variety of cases caused by path inflation [69]]. Importantly, in
contrast to previous work in 2011 showing little opportunity for
CDN optimization in mobile networks [68], our study indicates
that mobile carriers have more egress points today and CDNs have
multiple options for serving clients, but they do not always make
optimal decisions for mapping clients to CDN replicas, which can
have a significant impact on performance.

5.4.2 Network Diagnosis with Adaptive Scheduling

Dynamic scheduling not only enables new measurements in the
mobile environment, it also provides an opportunity to improve
measurement efficiency. For example, consider a measurement
experiment that measures performance periodically and issues di-
agnosis measurements in response to anomalous conditions, e.g., to
isolate whether there is a problem with a specific server, endpoint
or network. Without a priori knowledge about when and where
network problems will manifest, the only way to ensure diagnosis
information is always available is to issue diagnosis measurements
even when there is no problem detected. We now use two examples
to show how Mobilyzer allows us to issue diagnosis measurements
on demand in response to observed problems. For both cases, the
global manager scheduled a diagnosis traceroute task only after
observing an increase in ping round trip time.

Data Roaming. When roaming, a subscriber’s IP traffic may
egress into the public Internet directly from the roaming carrier,
or it can be forwarded to the home carrier [[15]], to facilitate data-
usage accounting and provide access to services located only in
the home carrier. Our diagnosis measurements identified the cost
of the latter approach. When a Verizon (US) user roamed on
five Europe carriers, the that latency to google.com (server in US)
increased from 198+46ms to 613+34ms for the same cellular
access technology. Our traceroutes reveal that the first hop of the
path belongs to Verizon network for all the measurements from five
roaming carriers and the first hop round trip time increased from
1594+47ms (non-roaming) to 469+26ms (roaming), indicating that
traffic from Europe was tunneled to the US and back for this user,
incurring hundreds of additional milliseconds of delay.

Path Dynamics. In this example, the path measurement revealed
that 100 ms increase in latency for a Vinaphone user was due
to a transient path change (perhaps due to a failure and/or BGP
update): latency and hop counts increased by a factor of 3 and 1.5,
respectively.

6. NEW MEASUREMENTS ENABLED

Mobilyzer enables us to crowdsource and measur{] the perfor-
mance of two popular Internet services on mobile devices: Web

This study is IRB-approved and participating users are consented
before participating via an in-app dialog. Users may report data via
a Google account, which allows them to view and delete their data
at any time, or they may report data anonymously. We strip all user
information and IDs from the data we gather; further, we coarsen
the location granularity to one square kilometer.
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have similar distributions, so we show only
the aggregated result here.

page load time (PLT) and Video QoE. We use the PLT measurement
to show that mobile CPUs can be a significant bottleneck in browser
performance, and simple optimizations can improve it. With our
video QOoE testing, we compare the performance of different bit-
rate adaptation schemes in the mobile environment.

6.1 Page Load Time Measurement

Recent studies show that a significant fraction of mobile Internet
traffic uses HTTP [56], and many of those flows come from Web
browsing. The wait time between requesting a Web page and the
page being rendered by the browser has a significant impact on
users’ quality of experience (QoE). This is often measured using
the PLT metric, defined to be the delay to fetch all the resources for
a page. In addition to measuring PLT for mobile devices, our work
is the first to characterize and compare it with page interactive time
(PIT), which is the delay to first render the page by the browser so
that a user can interact with it.

PLT and PIT are important performance metrics, useful for
predicting user experiences. Large PLT and PIT values can lead
to users abandoning the pages. As a result, there are several
efforts to improve PLT measurements. Browsers collect and report
fine-grained page performance and usage info using the Telemetry
API [1}14], without identifying the reasons for the measured
performance. Systems such as WebPageTest [|17] and others [39]
provide similar information from a small set of dedicated hosts in
multiple locations. The Wprof [65] approach helps explain the
resource dependencies that affect page load times, but it requires a
custom browser and has been used primarily in a lab environment.

Importantly, there is a poor understanding of PLTs in the mobile
environment. The key challenge is that it is difficult to instrument
existing mobile browsers (e.g., because they do not support ex-
tensions). Huang et al. [31] studied and measured mobile Web
browsing performance using controlled experiments and inferred
PLT from packet traces. However, we still have a limited under-
standing of the key factors that affect PLT behavior in the mobile
environment.

In this section, we use Mobilyzer to conduct the first crowd-
sourced measurements of mobile Web page performance. We use
a novel methodology that combines empirical data from resource
download timings with Wprof dependency graphs generated out-
side the mobile environment. This allows us not only to measure
summary statistics like PLT and PIT, but also understand bottle-
necks such as network and computation.

6.1.1 Methodology

We use a PLT measurement task to investigate page load times

on mobile devices. Previous methods to measure PLT either
instrument the browser to report resource load timings [65], or rely
on packet traces to infer the page load time [31450]]. Some also used
the change in layout to infer PLT [23]]. Using crowdsourcing, we
cannot modify a browser or infer from network traces. Instead, we
use the Navigation Timing (NT) API as described below, which is
arguably one of the most accurate ways of measuring PLT, as uses
system clock time and measured by the browser itself.
Metrics. Our implementation loads a URL in a WebView, a
browser commonly embedded in mobile apps. We measure the
time for a WebView to load a particular page using the NT
API [10], a W3C standard implemented in all browsers. This
allows us to measure timings for DNS lookup, TCP handshake,
transfer of the main HTML file, parsing and constructing the Docu-
ment Object Model (DOM), render time, and the completion of the
page load. After loading a URL using WebView, we use JavaScript
to read these timings and report them in the measurement result.

A key limitation of the NT API is that it reports timings only
for the main HTML page, not any other referenced resources.
To get resource timings, we intercept resource requests from the
WebView using an Android API that notifies our PLT task when
each resource is requested, allowing us to capture all of a page’s
resources and their timings.

When parsing completes and the DOM is constructed, the browser
can start rendering and painting the initial view of the page. At this
time, called above-the-fold render time, page becomes interactive.
In this paper, we refer to this as the page interactive time (PIT).
Developers argue that PIT is a better metric to quantify the user
perceived performance of the page than the total PLT, as it can re-
flect how quickly the user can begin interacting with the page [29].
Pages measured. To study the PLT of webpages on mobile
devices, we selected ten popular webpages, one from each of the
following categories in the top 100 Alexa pages: social networking,
image and video hosting services, forums, wikis, shopping, and
banking Web sites. For sites with a landing page that only shows a
login screen or redirects the client to an Android app, we selected a
custom profile page for testing to obtain a more meaningful result.

6.1.2  Summary results

We collected measurements from 80 mobile devices worldwide,
providing resource timings for 2,000 measurements per page on
average. We present summary results in Fig. [I0] which separates
page load time into TCP handshake, SSL handshake, time to first
byte, parsing, PIT, and total PLT.
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Figure 10: Navigation timing data from crowdsourced PLT measurements, comprising 80 users during six weeks (2000 measurements per

page on average).

A key result is that total PLTs range from 4 (craiglist) to 7
(apple.com) seconds, which is substantially larger than reported in
desktop environments (e.g., most PLTs were less than 2 seconds in
a previous study [65]]). As expected, the pages with higher total
PLTs tend to be more resource-rich (images, JavaScript). Fig.[T0]
shows that the initial network costs (TCP and SSL handshake, time
to first byte) are a small fraction of total page load time. That
said, the SSL handshake can add up to hundreds of milliseconds of
delay in the PLT [25]]. Importantly, the network delays for loading
pages are nearly identical for all pages and quite small, suggesting
that improving network latencies alone is unlikely to significantly
reduce PLTs in the mobile environment.

The figure also shows that most of the page load time comes
from rendering and resource loading. It is important to note the
large gap between PIT (when the DOM construction is complete)
and total PLT. This typically occurs due to network delays for
downloading resources and processing delays for parsing them. In
the next section, we disentangle these two factors to identify the
bottlenecks for page rendering on mobile devices.

Based on the gap between PIT and PLT, the proportion of page
interactive time to total page load time ranges from 45% for
homedepot to 90% for craigslist, and the mean ratio of PIT to
PLT is 0.62 (median 0.63) for the top 200 Alexa pages. This is
in contrast to findings in previous work [S0|], which reported that
for 60% of the pages, page render time is equal to page load time.
Our results indicate that it is important to consider both PIT and
PLT because of their high variability across sites.

6.1.3 Is the bottleneck computation or network?

The previous analysis describes that most of the user delays
for loading Web pages result from parsing and resource loading,
without further separating the time spent downloading objects
from that processing them. We now disentangle these factors and
demonstrate that processing delays are by far the largest bottleneck.
Inferring processing time. This requires understanding when a
browser spends time downloading objects versus processing them
— the NT API reports only the start the the end of the resource
download, without detailing the processing time. The Wprof
project provides this missing information, but requires running a
custom browser that we could not distribute to our users. We
propose a new methodology consisting of running Wprof analysis
on a Web page loaded in our lab environment, followed by using
the resulting dependency graph to infer processing times based on
empirical resource timing gathered using Mobilyzer.

We argue that the dependency graph generated by Wprof for
Chrome is likely identical to the one for the Android WebView,

because of these reasons: (1) most of the dependencies in the pages
are flow dependencies, which are imposed by all browsers [65],
and (2) both Android WebView and Chrome use WebKit as their
rendering engine. To help validate this assumption, we compared
the download order of resources in Chrome (dependency graph)
and Android WebView (resource timing), and found them to be
consistent.

Results. To determine the amount of computation time, we exclude
the network transfer time; i.e., we emulate the case where all
resources are cached. Figure |E| presents the average and standard
deviation for PLT, PIT and computation time. The results show that
for most of the pages in our study, computation is responsible for
about half of the PLT and an even larger fraction of PIT. Note that
for pages such as Tumblr with fewer scripts or more static content
(e.g., images), the network is responsible for approximately 80%
of total PLT. To compare, the Wprof study reported the median
portion of computation time for the top 200 Alexa pages in the
desktop environment to be 35%, higher than the computation time
of our five pages (Fig.[T3). This difference results from using the
mobile version of pages in our experiments, which are simpler than
the full version used in previous work.

We further used our crowdsourced measurements to understand
the impact of mobile-device CPU speed on loading Web pages. We
grouped the devices in our dataset into two clock frequency ranges
of their processor: 1-1.5 GHz (17 distinct models) and 1.9-2.5
GHz (13 distinct models). We also loaded the pages on a desktop
computer with a 2.6GHz CPU to compare the computation time
in a device with a powerful processor. Figure [T2] demonstrates
that PLT in mobile devices can significantly benefit from faster
CPUs. Specifically, the computation time of smartphones with 1.9-
2.5GHz processor is around half of the smartphones with 1-1.5GHz
processors on average. Thus, Web site load times can significantly
benefit from faster processors.

Importantly, desktop load times are significantly faster than
mobile devices. A potential pitfall of using desktops to simulate the
mobile environment is clear: while Wprof finds that increasing the
CPU frequency from 2GHz to 3GHz will decrease the computation
time by only 5%, we find in the mobile environment that the
benefit of using faster processors is significantly higher. Figure[[3]
indicates that, compared to a desktop computer with a 3 Mbps
downlink (i.e., similar to 3G’s 2-3 Mbps), the CPU resources in
smartphones is a bottleneck for Web page rendering, as it accounts
for half of the total PLT.
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Figure 11: Browser computation time versus
PLT and PIT. The fraction of load time
due to computation is variable, but often a
significant portion.

6.1.4 Critical Rendering Path and Render Time

To shorten the PIT, developers attempt to optimize the critical
rendering path (CRP) [4] — the sequence of steps the browser uses
to construct the DOM and render the initial view of a Web page.
During parsing, some network and computation processes can
occur in parallel, but certain blocking resources prevent parallelism
and are the main factors for the CRP time. Importantly, optimizing
resources not on the CRP (non-blocking resources) cannot shorten
the render time. We now use our Wprof-generated dependency
graphs and empirical page load times to diagnose cases where the
CRP is unduly long.

We compare the total parsing time and total computation time
in Figures [T0] and [TT] and find that for some of the pages, total
computation time differs from the total parsing time, implying that
the parser is blocked by the network. For example, for craigslist
and tumblr, the blocking time due to network in the CRP comprises
27% and 24% of total parsing time, respectively. By investigating
the dependency graphs for tumblr and craigslist, we find that large
blocking JavaScript files (150-260KB) are the culprit, since these
resources may not have been downloaded yet when the parser needs
to process them. In some cases, these problems can easily be
remediated: for craiglist the 255 KB JavaScript file would require
only 77 KB if the server supported gzip compression.

6.2 Video QoE Measurement

Video streaming over mobile devices is gaining popularity:
YouTube [5] reorted recently that about 50% of views come from a
mobile phone or tablet. Further, the average bandwidth achievable
in cellular networks in 2014 is 11 Mbps [11]], sufficient for high
resolution content (1440p).

Despite the higher capacities in today’s mobile networks, a key

challenge for streaming video providers is how to ensure reliable
and high quality video delivery in the face of variable network
conditions common in the mobile environment. This requires
avoiding stalls and rebuffering events, and adapting the video
bitrate to available network bandwidth. This is commonly done
via Dynamic Adaptive Streaming over HTTP (DASH), which tries
to seamlessly adapt the requested video quality based on available
bandwidth, device capability and other factors. In this section, we
evaluate the relative performance of two alternative schemes for
DASH, using crowdsourced measurements over mobile networks
experiencing a diversity of network conditions.
Methodology. We use the ExoPlayer library [2], which provides a
pre-built customizable video player for Android with DASH. Exo-
Player is currently used by YouTube and Google Play Movies [3],
thus allowing us to directly apply our findings to these popular
video services. This library allows us to record throughput, bitrates
and rebuffering events over time during video playback.

craigslist apple stackoverflow vimeo tumblr
Web pages

Figure 12: Computation time of different
mobile processors (30 distinct device mod-
els) compared with desktop.
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Figure 13: Computation time in mobile
devices can account for more than half of
the PLT. (Desktop was connected to a 3Mbps
broadband internet service.)

Using ExoPlayer, we implement a recently proposed buffer-
based adaptive (BBA) streaming algorithm [32], and compare it
with capacity-based adaptive (CBA) streaming, implemented by
YouTube. Both CBA and BBA attempt to minimize rebuffering
during playback. BBA [32] dynamically adapts the video bitrate
by monitoring the buffer occupancy. To avoid rebuffering, it
downloads chunks with a lower bitrate when the buffer starts
draining. During the startup phase, it uses the estimated bandwidth
to select the appropriate bitrate. On the other hand, CBA only
considers estimated bandwidth when selecting the proper bitrate.
It always chooses a bitrate that is less than or equal to the estimated
bandwidth.

We use a two-minute YouTube Vide(ﬂ with 5 bitrates (144p to

720p) for our measurements, and streamed it using BBA and CBA
on Mobilyzer clients. We collected 10K video measurements from
40 users during two weeks.
Results. We considered two QoE metrics to evaluate the perfor-
mance of these algorithms: (1) Average bitrate of the video that
is shown to user, which shows the average quality of video, and
(2) rebuffering events, which reports if the video gets interrupted
during the playback.

Average Bitrate. To investigate the performance of BBA and
CBA under different conditions, we group the measurements based
on their average bandwidt}ﬂ into two groups: larger than highest
video bitrate (2193 K bps) and smaller than the highest bitrate. In
the former case, there should be no need for rate adaptation, and
in the latter, the streaming algorithm must pick a bitrate lower than
the highest quality.

Figure [T4] shows the average throughput and bitrates achieved
by the two algorithms in crowdsourced measurements. In the low
bandwidth scenario, BBA displays videos with a higher average
bitrate. To understand why, we focus on two BBA and CBA
experiments with the same throughput during the measurement
(Fig.[T3). The figure shows that BBA switches to a higher bitrate
when the buffer occupancy is high, while CBA does not adapt its
rate because it considers only the instantaneous estimated through-
put. Therefore, when available bandwidth falls between available
bitrates (or switches between them), BBA will provide a higher
bitrate than CBA on average. On the other hand, we observe
that CBA adapts more quickly to sudden changes in throughput
by switching to higher or lower bitrates, while BBA maintains its
current bitrate based on its current buffer occupancy.

For devices with larger bandwidth, CBA provides a slightly
higher average bitrate than BBA. This occurs because BBA is

3We pick this value to limit data consumption; further, a recent
study indicates that most video views are less than 3 minutes [[12].

“Bandwidth is estimated from the chunk download times.
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more conservative and increases its bitrate incrementally during the

startup phase.
Rebuffering. A significant additional component of video QoE
is the rate of rebuffering events — the lower, the better. We

investigate the performance of BBA and CBA using this metric
in Figure [T6] which shows the percentage of measurements with
rebuffering events. We group our results into five bandwidth
buckets based on the video bitrates. The figure shows that when
the average bandwidth is lower than the smallest throughput, all the
measurements experience at least some rebuffering. However, with
higher bandwidths, BBA experiences fewer rebuffering events.
This occurs because it avoids rebuffering by switching to the lowest
bitrate when the buffer is nearly drained.

Competition under limited bandwidth. To understand how BBA
and CBA behave when they compete for a limited bandwidth,
we stream videos using a smartphone connected to an AP with
constrained bandwidth. We played a BBA and CBA stream at the
same time using a Mobilyzer parallel task. When using the load
control ExoPlayer feature, streaming pauses when the playback
buffer reaches a threshold; in this case, CBA will pauses for 22.9s
on average, while BBA pauses only for 2.9s. This lower pause time
occurs because BBA switches to higher bitrates when the buffer is
nearly full. Thus, while the throughput is lower than the highest
bitrate, BBA will not pause. In contrast, playback buffer size for
CBA will grow continuously, due to choosing a bitrate lower than
the estimated throughput.

These behaviors have a significant impact on energy and perfor-
mance. In terms of energy, CBA improves efficiency by letting
the radio go idle during pauses. However, when CBA pauses,
BBA consumes the remaining bandwidth and achieves higher av-
erage throughput. In our experiments, BBA achieved 63% higher
throughput and 57% higher bitrate than CBA, meaning that BBA
will provide higher QoE.

In summary, our evaluation shows that the BBA algorithm per-
forms better than CBA in the mobile environment based on com-
mon QoE metrics. Further investigation is needed to determine
how frequent rate adaptation affects the user experience, and to
understand the broader network impact of large numbers of clients
using BBA instead of CBA.

7. CONCLUSION

This paper makes the case for network measurement as a service
in the mobile environment, and demonstrates how we addressed
several challenges toward making this service practical and effi-

cient. Mobilyzer provides (i) network isolation to ensure valid
measurement results, (ii) contextual information to ensure proper
scheduling of measurements and interpretation of results, (iii) a
global view of available resources to facilitate dynamic, distributed
experiments and (iv) a deployment model with incentives for ex-
perimenters and app developers. We showed that our system is
efficient, easy to use and supports new measurement experiments
in the mobile environment. As part of our future work, we are
designing an interface to facilitate new measurement experiments
and testing new ideas for predicting resource availability and opti-
mizing measurement deployment.
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