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ABSTRACT

Knowledge of Internet paths allows operators and researchers to
better understand the Internet and troubleshoot problems. Paths are
often asymmetric, so measuring just the forward path only gives
partial visibility. Despite the existence of Reverse Traceroute, a tech-
nique that captures reverse paths (the sequence of routers traversed
by traffic from an arbitrary, uncontrolled destination to a given
source), this technique did not fulfill the needs of operators and the
research community, as it had limited coverage, low throughput,
and inconsistent accuracy. In this paper we design, implement and
evaluate revtr 2.0, an Internet-scale Reverse Traceroute system
that combines novel measurement approaches and studies with
a large-scale deployment to improve throughput, accuracy, and
coverage, enabling the first exploration of reverse paths at Internet
scale. revtr 2.0 can run 15M reverse traceroutes in one day. This
scale allows us to open the system to external sources and users,
and supports tasks such as traffic engineering and troubleshooting.
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1 INTRODUCTION

Most Internet paths are asymmetric [30], and so operators trou-
bleshooting problems and researchers seeking to understand Inter-
net routing want visibility into both directions to obtain a complete
picture. However, traditional tools such as traceroute only measure
the forward path from the user, leaving the reverse path unknown
[73]. The invisibility of reverse paths complicates troubleshooting
[73], hinders industry efforts to improve client performance [56]
and academic efforts to localize Internet outages [51], and forces
systems to rely on unrealistic assumptions of path symmetry [83].
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To overcome this longstanding impediment, researchers and
operators need a way to measure reverse paths with high accuracy,
high coverage, high throughput, and low latency, similar to what
is possible with traceroute. We need: (1) the ability for users to
measure paths to their own hosts from arbitrary remote hosts,
without access to those remote hosts to run commands; (2) large-
scale measurements of reverse paths from hosts across the Internet
towards distributed vantage points in a reasonable time, e.g., 20
million measurements per day like Ark does for forward traceroute
[1]; and (3) the ability to issue on-demand measurements to support
operations and dynamic experiments, as one could with forward
traceroutes from RIPE Atlas, the cloud, and one’s own hosts.

Although earlier research developed Reverse Traceroute [52]
(named revtr 1.0 hereafter), a technique to measure reverse paths
from uncontrolled destinations, it did not satisfy these goals. It
required issuing a large number of probes, which limited through-
put. The 2010 paper only measured a few thousand reverse paths,
and even our reimplementation of the system, which adds better
vantage points, optimized code, and caching/reuse of intermediate
measurements, can measure only a few hundred thousand reverse
paths per day (§5.2). Further, although the overall accuracy was
high, revtr 1.0 sometimes returned incorrect paths and did not
have a way to know whether a particular measurement was trust-
worthy, making it hard to trust its results and rendering the system
unsuitable for operational use (according to our contacts at a hyper-
giant that deployed a system based on that earlier research paper).
Finally, the approach required complex dynamic orchestration of
its distributed vantage points and only allowed measurements back
to PlanetLab and M-Lab vantage points, limiting its usefulness in
practice since measuring other routes would require deploying a
similarly complex system.

We make the following contributions:

revtr 2.0, a system that can measure reverse paths at Inter-

net scale. While the basic measurement technique (called Reverse
Traceroute) is the same as revtr 1.0, we identify explicit tradeoffs
among coverage, accuracy, and throughput and select tradeoffs to
meet our goals. We build a system using new measurement tech-
niques, measurement studies, and system optimizations. Because
it is a complex distributed system requiring coordination of van-
tage points around the world, we operate revtr 2.0 as a service:
researchers and operators can use our deployment to measure re-
verse paths back to their own sources (Appx. A).

Throughput: New techniques that enable revtr 2.0 to sus-

tain a throughput of 173 reverse traceroutes per second, 43×
higher than revtr 1.0 and similar to Ark’s [1] rate of forward
traceroutes. Our new techniques significantly reduce the number of
probes issued to measure a reverse path. The most efficient ways Re-
verse Traceroute discovers reverse hops are by issuing record route
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probes, which measure the first nine hops (including the forward
path), making fast discovery of nearby vantage points key; and by
intersecting known routes in a traceroute atlas, short circuiting the
need to issue more probes.

Our first technique improves record route vantage point selec-
tion by grouping vantage points by their ingresses into a desti-
nation prefix, avoiding wasteful redundant measurements. Our
second technique increases the set of potential intersections with
the traceroute atlas by revealing additional IP-address aliases that
are likely to be observed in reverse traceroutes. Finally, we perform
a measurement study to find the right balance between atlas size
(more traceroutes provide more opportunities for intersections),
atlas freshness (stale measurements introduce opportunities for
incorrect inferences), and atlas coverage (smart traceroute selection
may yield more intersections), given a limited probing budget.
Accuracy: New techniques that enable 92.3% of revtr 2.0’s

reverse traceroutes to exactly match the AS path of a direct

traceroute issued from the destination and an additional 6.1%
to match except for unresponsive hops (“*”), compared to 81.8%
for revtr 1.0,. Router-level accuracy is hard to assess because
it is hard to infer which IP addresses belong to the same router
and because load balancing causes multiple router paths, but our
analysis suggests that revtr 2.0 does not introduce errors.

We improved accuracy by discarding reverse traceroutes likely
to contain errors and by flagging possible missing/unresponsive
hops. When revtr 1.0 is unable to measure a reverse hop, it issues a
forward traceroute to the current hop, assumes the last link is sym-
metric, and continues the reverse traceroute from the penultimate
hop. We conduct a measurement study and find that assuming sym-
metry on an intradomain hop is generally correct, while assuming
symmetry on an interdomain hop is not.We therefore allow Reverse
Traceroute to assume symmetry only on intradomain hops. By dis-
carding measurements rather than risking an incorrect assumption
of interdomain symmetry, revtr 2.0 achieves high accuracy so that
its measurements can be used with confidence.
Coverage: revtr 2.0 can measure reverse paths from desti-

nations in 39,544 ASes that host 92.6% of Internet users [7],
despite discarding measurements that would require assuming in-
terdomain symmetry. This coverage dwarfs RIPE Atlas (3,682 ASes).
Demonstration of how revtr 2.0 enables outside sources to

measure routes and use them to perform traffic engineering:

revtr 2.0 can realize our goal of on-demand measurements in
support of operations and can incorporate external sources and
users. We demonstrate this via a traffic-engineering case study with
the PEERING testbed [67] in which revtr 2.0 measured reverse
routes to inform announcement reconfigurations, which in turn led
to better load balancing and reduced latency.
A large-scale study of Internet path asymmetry: To demon-
strate how revtr 2.0 supports our goal of large-scale topology
mapping, we conduct the most comprehensive study on Internet
path asymmetry to date with 30M pairs of forward and reverse path
measurements, significantly expanding on prior work that consid-
ered 120K paths between RIPE Atlas vantage points [30]. We find
that only 53% of paths are symmetric even at the coarse AS-level
granularity, further demonstrating the need for an Internet-scale
Reverse Traceroute system.

2 BACKGROUND

This section reviews our 2010 Reverse Traceroute technique. That
earlier work has further details [52]. Whereas (forward) traceroute
measures the path from a source to an uncontrolled destination, the
goal of Reverse Traceroute is to measure the path from an uncon-
trolled destination back to the source (from D to S in Figure 1). To
build the reverse path from D to S, Reverse Traceroute relies on the
assumption that most Internet routing is destination-based (which
we validated in [34] and in Appx. E), such that the next hop from a
given router depends only on the destination (which here is S). This
allows Reverse Traceroute to piece together the path hop-by-hop to
S: when it discovers a new reverse hop, that current hop is set as the
new destination D’, and Reverse Traceroute measures the reverse
path from D’ until the path reaches S. To find the next reverse hop,
Reverse Traceroute tries different measurement techniques that
rely on a set of distributed vantage points. Figure 1, based on Figure
3 of our 2010 paper, recaps these different techniques in the order
Reverse Traceroute tries them:
Intersecting a traceroute (Fig. 1a): If a traceroute to the source
intersects the current hop (includes that hop or an IP alias of it),
destination-based-routing means that we can assume that the rest
of the reverse path follows the traceroute from the intersection
to S. To create a set of potential intersections, Reverse Traceroute
maintains an atlas of traceroutes from a set of vantage points to
the source. In Figure 1a, the traceroute atlas includes traceroutes
from vantage points V1, V2 and V3, none of which intersect the
current hop (D, at this point).
Record route (RR) (Figs. 1b to 1d): If no intersecting traceroute
can be found from the current hop, the source S sends the current
hop an ICMP echo request with the IP record route option enabled.
This option instructs routers on the path to record their IP addresses
in the packet header, which has space for up to nine addresses.
When the current hop replies with an ICMP echo reply, it copies
the IP options into the response. If fewer than 9 hops were recorded
on the forward path, the remaining slots can be filled with reverse
hops. If S is more than 8 hops away from the current hop (Fig. 1b),
Reverse Traceroute tries to find a vantage point within record route
range of the current hop, using that vantage point to send the packet
to the current hop while spoofing as S, causing the current hop to
reply to S along the desired reverse path. In Figure 1c, V3 is 8 RR
hops away from D, so when D responds to S, Reverse Traceroute
uncovers the reverse hop R1 towards S. Then, in Figure 1d, V2 is 7
RR hops away from R1, uncovering the reverse hops R2 and R3.
Timestamp (TS) (Figure 1e): If Reverse Traceroute is unable to
measure a reverse hop using record route, it tests adjacencies of the
current hop in traceroute topologies as possible next reverse hops.
For each adjacency, Reverse Traceroute sends an IP timestamp
tsprespec packet to the current hop. The IP timestamp tsprespec
option allows the sender to specify up to four IP addresses, and
each IP address will record its timestamp only if previous addresses
already recorded their timestamp. Reverse Traceroute specifies the
IP addresses ⟨current hop, adjacency⟩. If the response includes a
timestamp for both hops, then the adjacency must have recorded its
timestamp after the current hop, implying that the adjacency is on
the reverse path. On Figure 1e, after having discovered R1, R2 and
R3 with record route, Reverse Traceroute sends an IP timestamp
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Figure 1: How 2010 Reverse Traceroute technique measures a reverse path using various techniques and vantage points [52].

tsprespec packet to R3 with the prespecified addresses ⟨R3, R4⟩.
As R4 put its timestamp after R3 has been reached, R4 is actually
on the reverse path to S. At this point, the reverse path Reverse
Traceroute is measuring from D intersects the traceroute from V1
at R4 in Figure 1f, and Reverse Traceroute assumes the reverse path
from D to S follows V1’s traceroute from R4 to S.

Assuming symmetry: If no techniques uncover the next reverse
hop, Reverse Traceroute issues a traceroute from source to destina-
tion and assumes the penultimate hop is the next reverse hop.

3 GOALS

Our goals are informed by our experiences designing, operating,
and/or evaluating multiple Reverse Traceroute implementations
over the last decade, including revtr 1.0 for the 2010 paper [52]
and a deployment at a large cloud provider. These implementations
had limitations with respect to needs of researchers and operators.

Coverage: A Reverse Traceroute system must be able to measure
paths of interest. Broad coverage requires widespread router sup-
port for IP options, and it requires vantage points near (in terms of
hops) routers on reverse paths. It also benefits from a rich tracer-
oute atlas to intersect reverse paths early. The system must allow
external users to add their sources to measure paths towards them.

The 2010 paper did not evaluate Internet-wide coverage [52], but
revtr 1.0 had a major limitation: it could only measure paths for
its (PlanetLab/M-Lab) vantage points. As such, it was not useful to
operators who care about paths traversing their networks. Adding
outside vantage points requires solving research challenges that
the 2010 paper did not address, since using a vantage point requires
knowledge of routing to and from it: How can this knowledge be
quickly bootstrapped? Given feasible probing rates, how should the

system balance using more measurements to bootstrap more effec-
tively, versus saving probing budget to service reverse traceroute
requests or add more vantage points?

Accuracy: A system must return trustworthy results. Since revtr
1.0 could not support outside sources, a cloud provider consulted
with us to deploy their own instantiation. Reverse Traceroute some-
times made errors in path measurements [52] (e.g., due to assuming
symmetry), and so the results could not be relied on for operational
decisions, resulting in the instantiation being decommissioned.

Throughput: revtr 1.0was designed to support proof-of-concept
experiments but not high measurement throughput. To serve
researchers and operations, revtr 2.0 should support two
common use cases of traceroute: large-scale topology mapping and
on-demand measurements.
Topology mapping. revtr 2.0 should provide reverse path mea-
surements analogous to what Ark provides for forward paths. Ark
measures from ≈110 vantage points to all ≈800,000 IPv4 BGP pre-
fixes at a rate of ≈20M traceroutes per day [1]. Recent work found
that >90% of paths are still valid after 10 days [38], and so our goal
is to support remeasuring paths every 10 days. Measuring from
800,000 destinations to the 146 M-Lab sites in 10 days requires a
throughput of ≈11.7M reverse traceroutes per day.
On-demand measurements. Exact needs vary, but two attributes suf-
fice to support a large range of use cases. revtr 2.0 should support
reverse path measurements to users’ own sources, rather than being
limited to measure paths to M-Lab vantage points. Second, users
should be able to characterize Internet routing to their sources in a
short period of time.

Akamai optimizes anycast routing worldwide by pinging 15,300
routers at key convergence points on routes to clients [82], then
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adjusting routes to see how the pings change. Because this scale
of destinations suffices to capture the routing of a major Internet
content provider, it may also suffice for other use cases such as
identifying hijacks [83], locating failures [53] and causes of route
changes [49], and identifying sources of spoofed DDoS attacks [36].

Since these use cases either rely on route engineering or on un-
derstanding route changes, revtr 2.0 should be able to measure
these routes in roughly the time period that traffic engineering
techniques are given to converge. Announcements every 15 min-
utes were subject to route flap damping [41], meaning that faster
changes impede traffic engineering, and so we want to support
quickly bootstrapping outside sources and issuing ≈15,000 reverse
traceroutes within 15 minutes. This rate equates to ≈1.4M per day,
but, in practice, most studies are more conservative (waiting 90
[82] or 120 [19, 25, 53, 66] minutes between announcements), and
so 1.4M per day will suffice to support multiple parallel uses.

Combining the two use cases, our goal is a system that can
measure to users’ sources and that supports at least 11.7M reverse
traceroutes per day for topology mapping and 1.4M per day for on-
demand measurements (13.1M per day total). If the system becomes
popular, we (or others) can add parallel deployments. In contrast,
revtr 1.0 only supported PlanetLab and M-Lab sources [52] and
could only measure a few hundred thousand paths per day (§5.2).

4 BUILDING AN INTERNET SCALE REVERSE

TRACEROUTE SYSTEM

With these goals in mind, we decouple the basic Reverse Traceroute
technique (§2) from a set of key design questions that have to be an-
swered to arrive at a concrete instantiation of a Reverse Traceroute
system. For each question, Section 4.1 explains the tradeoffs and
insights that enable a solution that meets our goals and contrasts
our design with the 2010 Reverse Traceroute implementation.

We strive for a system with the coverage and accuracy to be
useful. However, we consider tradeoffs such as the limitation on
throughput imposed by employing many additional measurements
to achieve marginal gains in coverage/accuracy. It would also be
better to slightly reduce coverage by not returning low-confidence
measurements, if the result is a system that achieves high accu-
racy for the paths it does measure. Since system throughput has an
inverse relationship to the packets sent per reverse traceroute mea-
surement, we strive to reduce probes per measurement by moving
online measurements offline, by caching measurements for reuse,
by minimizing the number of probes required to find one that un-
covers reverse path information, and by maximizing the reverse
hops uncovered per probe.
Our main contribution in this paper is an Internet-scale Re-
verse Traceroute system that is available as a service to the commu-
nity (Appx. A).We havemade progress on addressing the limitations
of the system described in our 2010 Reverse Traceroute paper, both
in our earlier work [34, 38, 39] and in this paper. This paper is the
culmination of that effort, building on and extending our earlier
work to arrive at the first system capable of measuring reverse
paths at Internet scale. Table 1 lists the key insights across this
body of work and how they benefit revtr 2.0. Insights 1.1 to 1.3
are the key enablers of Reverse Traceroute (in brief):

Reverse traceroute
request from D to S

R ← D

No

Record Route finds 
next reverse hop Rʼ?

Yes

Yes

Done!

Q4: Which adjacencies 
should be tested via IP 
timestamp? None

No

Q5: What to do when 
unable to find next 
reverse hop Rʼ? Issue 
forward traceroute to R. 
Is link between 
penultimate hop Rʼ and 
R intradomain?

R ← Rʼ

Yes

REVTR2.0 & 1.0 step

REVTR1.0 step

REVTR2.0 helper service

Traceroute Atlas

Vantage point selection

Q1: Which traceroutes to issue? 
Periodic, random traceroutes 
from 1000 RIPE Atlas probes

Background measurements

Abort: Unable to measure with confidence

No

R intersects 
traceroute to S?

Q2: How to identify intersect-
ions? Issue (spoofed) record 
routes to identify IP aliases

Q3: Which VP should issue a 
record route measurement? 
Identify VPs closest to each 
ingress of each BGP prefix

Figure 2: Overview of the revtr 2.0 control flow.

Insight 1.1: Because most routing is destination-based, the reverse
path can be measured hop-by-hop.
Insight 1.2: IP options can measure reverse hops.
Insight 1.3: Spoofing enables using the best-located vantage point.

Our 2010 paper did not assess how often these claims held. This
paper evaluates them, finding that 6.6% of hops violate destination-
based routing (ignoring load balancing, which does not impact ac-
curacy), but only 1.1% hurt revtr 2.0’s AS-level accuracy (Appx. E);
78% of ping-responsive destinations respond to options (Appx. F);
and, without spoofing, reverse hops can be measured for 32% of
⟨source, destination⟩ pairs (of destinations that respond to op-
tions), whereas spoofing enables measurements for 63% (Appx. F).

Section 4.1 highlights our other insights and how they inform
how revtr 2.0 answers the design questions to arrive at a system
that meets our goals. Figure 2 shows an overview of the revtr 2.0
system, including steps to measure hops, helper services to support
those steps, and the corresponding design questions (Q#). The end
of Section 4.1 walks through the figure end-to-end.

4.1 Design questions

Q1.Which traceroutes to issue for the traceroute atlas? revtr

2.0 measures from 1000 random RIPE Atlas VPs to each source daily,

replacing redundant traceroutes with new VPs each day.

Insight 1.4: Paths are stable enough that the atlas need not be re-
freshed frequently and can be tuned across days [38].
Insight 1.5: Routes generally form a tree rooted at the source. It
takes many traceroutes to cover rarely-used branches far from the
source, but much of the benefit comes once one has issued sufficient
measurements to cover widely-shared branches closer to the source,
which random measurements can achieve.
Tradeoffs: RIPE Atlas provides path diversity but has severe rate
limits [29]. By allocating its probing budget to a relatively small
atlas per source with daily refreshing to limit staleness, revtr 2.0
balances accuracy, coverage and throughput. Only 0.7% of reverse
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Table 1: The Internet-scale Reverse Traceroute system in this paper relies on and is the culmination of insights, measurement

techniques, and measurement studies in this paper and our earlier work with collaborators [34, 38, 39, 51, 52, 60, 68].

Insight Impact on revtr 2.0

Basic Reverse Traceroute building block techniques

Insight 1.1: Since most routing is destination-based ([34], Appx. E), the
reverse path can be measured hop-by-hop ([52]).

Accuracy: Ignoring load balancing, which does not impact accuracy, 6.6% of hops
are not destination-based. Only 1.1% hurt AS-level accuracy (Appx. E).

Insight 1.2: IP options can measure reverse hops ([39, 52, 60, 68]). Coverage: 78% of ping-responsive destinations respond to options (Appx. F).
Insight 1.3: Spoofing decouples the forward and reverse paths to allow
use of vantage points in the best positions, with the request sent from
a different vantage point than where the response is received ([51, 52]).

Coverage: Without spoofing, reverse hops can be measured for 32% of
⟨source, destination⟩ pairs (of destinations that respond to record route), whereas
with spoofing reverse hops can be measured for 63% (Appx. F).

Balancing coverage and freshness of the traceroute atlas, given a limited measurement budget

Insight 1.4: Most paths are stable, so path measurements can be cached
for extended periods ([38]).

Throughput and coverage: By caching traceroutes for a day rather than refreshing
more frequently, revtr 2.0 covers more paths with a fixed budget, intersecting
traceroutes sooner (enabling it to issue 26% as many packets as revtr 1.0, §5.2.4).
Accuracy: Only 0.7% of reverse traceroutes use a stale traceroute (Appx. D.2.2).

Insight 1.5: A relatively small number of randomly selected vantage
points suffice to create a traceroute atlas by uncovering widely used
routes (Appx. D.2.1). Rarely used routes require many measurements
to uncover but, being rarely used, do not yield much additional value.

Coverage: Traceroutes from 1000 random vantage points, refreshed daily after
replacing those that proved not useful, provide 93% of the value of the optimal
5000 (Appx. D.2.1). Throughput: This atlas provides 56% of the hops on a revtr
2.0 measurement, reducing the online measurements needed (Appx. D.2.1).

Refining techniques for efficient IP options probing, yielding higher throughput

Insight 1.6: Aligning record route and traceroute measurements to de-
termine whether/where they intersect is hard. Instead, revtr 2.0 deter-
mines a priori which record route hops it will see each hop in a set of
traceroutes (§4.2), obtaining better tradeoffs for our use case.

Throughput: Our technique finds more intersections sooner, saving 5.5% of the
probing overhead (§5.2.4). Its measurements are offline and scale onlywith the size
of the traceroute atlas, without requiring additional measurements as throughput
increases.

Insight 1.7 : The flattening of the Internet and the expansion of M-Lab
put more destinations within record route range ([39], Appx. F).

Coverage: 63% of destinations are in range, vs. 12% in 2011 (Appx. F). Throughput:
As vantage points are closer (e.g., 39% of destinations are within 4 hops, vs. 16%
in 2016), each reverse traceroute requires fewer probes, increasing throughput.

Insight 1.8: To find the closest vantage point to a destination, it suffices
to probe the destination once per ingress into the destination’s prefix,
from the vantage point closest to that ingress (§4.3).

Throughput: Whereas revtr 1.0 used 20% of probing budget offline to find vantage
points near destinations, revtr 2.0 reduces the overhead to 3%, using saved probes
to increase Reverse Traceroute throughput. It also uses many fewer online probes
via smarter VP selection (9 RR probes per path (mean) vs. to 29 for revtr 1.0
(§§ 5.2.4 and 5.3)), which translates into lower latency and higher throughput.

Insight 1.9: Although the IP timestamp option can measure reverse hops
([52, 68]), each hop typically requires multiple probes. The probing
overhead is not worth the limited additional coverage.

Throughput: By not using timestamp, revtr 2.0 requires ≈34% fewer online
probes (§5.2.4), increasing throughput. Coverage: By not using timestamp, revtr
2.0 loses less than 1% of coverage (§5.2.3).

Trading off coverage for high accuracy

Insight 1.10: For operational use, it can be better to only provide answers
when they are trustworthy than to maximize coverage but have an
unknown subset of answers be incorrect.

Coverage: revtr 2.0 only returns results for 78% of attempted paths. Accuracy:
Returning the additional paths would require assumptions that are only correct
for 57% of cases (§4.4).

traceroutes intersect a stale traceroute (Appx. D.2.2). and the at-
las converges in 5 iterations to a near-optimal set of traceroutes
(Appx. D.2.1). This near-optimal coverage improves throughput, as
Reverse Traceroute intersects traceroutes earlier, requiring fewer
record route probes.
revtr 1.0: revtr 1.0 used the 200 PlanetLab sites that existed, which
were biased toward educational networks, and 1200 web-based
traceroute servers hosted in 186 networks, which are severely rate
limited. All vantage points issued traceroutes to the sources when a
reverse traceroute was requested, which incurred significant over-
head and limited throughput.
Q2. How should intersections between record route mea-

surements and the traceroute atlas be identified?

Routers may return different IP addresses to RR and traceroute
measurements, complicating detecting intersections.

revtr 2.0 issues RR probes to each hop in the traceroute atlas to

identify reverse RR hops used by that hop (§4.2). A subsequent RR

measurement intersects the traceroute if it includes any of the reverse

RR hops.

Insight 1.6: While router IP alias information can be used to deter-
mine if paths intersect, approaches have high overhead and poor
coverage [17, 54], and aligning RR and traceroute is hard [70]. We
sidestep these challenges by focusing on identifying just the IP
addresses used on traceroutes and RR probes toward the source.
By designing a solution to our specific problem of determining
intersection, we obtain better tradeoffs for our use case.
Tradeoffs: revtr 2.0’s approach promotes high throughput by mov-
ing all measurements offline, which is impossible with earlier tech-
niques that require knowing both IP addresses to check intersec-
tions, and by identifying more intersections, reducing record route
measurements per path. The number of measurements needed by
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this technique scales with the size of the traceroute atlas, without re-
quiring additional measurements as throughput increases. Finding
more intersections promotes accuracy and coverage as well.
revtr 1.0 combined alias resolution datasets [22, 55, 59, 70]. revtr
1.0 could not identify intersections for IP addresses not in these
datasets and uncovered for the first time during a reverse tracer-
oute. Missing intersections increases the number of probes needed
to measure a reverse path, limiting throughput and introducing
opportunities for inaccuracies.
Q3. Which vantage point(s) should issue a particular

spoofed record routemeasurement?

The closer a vantage point is to a destination, the more hops it
can reveal in one probe, reducing the number of probes to measure
a reverse path. In addition to the order, one can change batch size or
the stop condition to balance between using more vantage points
to maximize hops revealed (potentially reducing the need for more
iterations) or fewer to minimize overhead in the current iteration.
revtr 2.0 identifies the closest M-Lab vantage point to each ingress

into each network, then uses those closest vantage points to probe any

destination in the network (§4.3).

Insight 1.7: Colocation facilities are close to many networks in
today’s flattening Internet, providing the potential to reveal more
reverse hops per RR measurement, and they tend not to filter the
spoofed packets Reverse Traceroute requires. M-Lab provides access
to VPs in such facilities around the world.
Insight 1.8: Each prefix has a fixed set of ingress routers. Because of
destination-based routing, a vantage point will generally use the
same ingress to reach all destinations in a prefix, and the path from
an ingress to a destination will generally be the same regardless of
source. Therefore, to maximize the number of reverse hops obtained
from an RR measurement, it suffices to probe the destination once
per ingress, from the M-Lab vantage point closest to that ingress.
Tradeoffs: Even when PlanetLab was active, it provided negligi-
ble incremental benefit over M-Lab’s record route coverage [39].
Whereas revtr 1.0’s approach requires dedicating 20% of the prob-
ing budget to offline measurements that support answering this
question, revtr 2.0’s approach reduces the overhead to 3%, saving
more probing budget to increase Reverse Traceroute throughput.
revtr 2.0 finds a vantage point in range for 99% of destinations that
have one, trading off this slight loss in coverage for much lower
online probing overhead via smarter VP selection (an average of 9
RR probes per path, compared to 29 for revtr 1.0 (§§ 5.2.4 and 5.3)),
which translates into lower latency and higher throughput.
revtr 1.0 relied on costly background measurements to order van-
tage points, and it would try them all until one reached the desti-
nation, possibly wasting budget when the vantage points are not
within range. Finally, PlanetLab nodes were mainly at universities,
and hence far from the core, resulting in limited coverage given
record route’s nine hop limit [39].
Q4.Which adjacencies should be tested via IP timestamp op-

tion measurements? revtr 2.0 does not use timestamp.

Insight 1.9: Most routers that support IP timestamp also support
record route. The flattening Internet and expansion of M-Lab place
a vantage point within RR range of most routers [39].

Tradeoffs: Timestamp provides little benefit in accuracy and cover-
age (<1%), so is not worth the overhead and attendant reduction in
throughput (an average of 5 timestamp probes per path for revtr
1.0, §§ 5.2.3 and 5.2.4, and Appx. D.1).
revtr 1.0 used every adjacency in the iPlane dataset [2].
Q5. What should Reverse Traceroute do when it is unable to

measure a hop? revtr 2.0 issues a forward traceroute to the last

measured hop. If the last link is intradomain, revtr 2.0 assumes it

is traversed symmetrically on the reverse path. If it is interdomain,

revtr 2.0 gives up on measuring the path.

Insight 1.10: For operational use, it can be better to only return paths
when they are trustworthy than to maximize coverage but have an
unknown subset of untrustworthy paths.
Tradeoffs: revtr 2.0 is able to measure reverse paths for only 78% of
paths (compared to 100% for revtr 1.0), as measuring them would
require assuming symmetry of interdomain links (§5.2.3). However,
such assumptions are only correct for 57% of the cases, and so
revtr 2.0 trades off coverage to achieve high accuracy. Conversely,
assuming symmetry of an intradomain link is correct in 90% of the
cases, making these symmetry assumptions safe (§4.4).
revtr 1.0 issues a forward traceroute to the last hop on the reverse
path and always assumes symmetry. Assuming symmetry some-
times returns incorrect paths, and so every measurement had to be
treated with suspicion.

Summary and walk-through of revtr 2.0. Figure 2 depicts
how our answers to the design questions fit together to measure
a reverse traceroute from a destination D to a source S. We walk
through the figure with pointers to the insights from Table 1 that
inform each step. Table 1 highlights the quantitative impact on
revtr 2.0 of each insight. The system pieces together the path in-
crementally from D back to S (Insight 1.1). At any time, it is trying
to discover hops from the current hop R (initialized to D) towards
S. revtr 2.0 first checks whether R is on a known route to S as
measured daily in the background for the traceroute atlas (Q1, In-
sights 1.4 and 1.5). To increase the chance of finding an intersection,
the system also issues background record route measurements to
the hops in the atlas traceroutes to learn which IP addresses to ex-
pect if aliases of the hops are later encountered as part of a reverse
traceroute (Q2, Insight 1.6). If R intersects a traceroute to S, revtr
2.0 uses the rest of the traceroute to complete the reverse tracer-
oute (Insight 1.1). If not, revtr 2.0 tries to uncover a reverse hop(s)
from R with record route (Insight 1.2), spoofing as S (Insight 1.3)
from the M-Lab vantage points closest to the ingresses into the
prefix of R, which it determines using background measurements
(Q3, Insight 1.8). If record route uncovers a reverse hop R’, revtr
2.0 sets the new current hop as R’ and returns to the first step. If
record route does not uncover any hops, revtr 2.0 does not issue
timestamp measurements, unlike revtr 1.0 (Q4, Insight 1.9), and
instead performs a forward traceroute to R and considers the penul-
timate hop R’. If the link (R’,R) is intradomain, revtr 2.0 sets the
new current hop as R’ and returns to the first step (Insight 1.1). If
interdomain, revtr 2.0 aborts the reverse traceroute as it cannot
confidently measure the path (Q5, Insight 1.10).
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Figure 3: Traceroutes typically reveal ingress interfaces (red)

while RR reveals other addresses (blue). We send RR probes

from 𝑆 (or spoofed as 𝑆) to traceroute interfaces (𝑖1, 𝑖2, 𝑖3) to
uncover the interfaces (𝑒1, 𝑒2, 𝑒3) that would be seen by a later

reverse traceroute (e.g., from D to S) that uses RR.

4.2 Intersecting record route and the

traceroute atlas (Q2)

We develop a technique to identify a priori what IP addresses to
expect in RR probes if a later reverse traceroute intersects the tracer-
oute atlas. After performing an atlas traceroute, we send RR probes
to each traceroute hop to reveal the router’s IP address revealed by
RR probes towards the source. Later, if a reverse traceroute includes
one of these addresses, we conclude that it intersected the atlas
traceroute. On the other hand, if a reverse traceroute uncovers a
new IP address, we infer that it does not intersect traceroutes in
the atlas, avoiding the need to perform aliasing at runtime.

In Figure 3, to reveal the interfaces that may be observed by RRs
during a reverse traceroute, we send RR pings to 𝑖1, 𝑖2, 𝑖3 from 𝑠 or
spoofing as 𝑠 from vantage points close to each interface. Here the
spoofed RR ping from 𝑠 ′ to 𝑖1 reveals [𝑖1, 𝑒1, 𝑒2]. Later, the reverse
traceroute from 𝑑 to 𝑠 has 𝑒2 on the reverse path, allowing us to
intersect the atlas traceroute from 𝑣 to 𝑠 and the reverse traceroute
from 𝑑 to 𝑠 at 𝑟2.

4.3 Selecting vantage points to issue spoofed

record route probes (Q3)

Routes from different sources that share the same ingress to a
BGP prefix converge on their way to the ingress, and routes to
different destinations inside the BGP prefix diverge after traversing
their ingress link. So, probing a destination from the closest vantage
point to each of the destination prefix’s ingresses suffices to find the
closest vantage point to the destination—the vantage point capable
of uncovering the most reverse hops via a spoofed record route
measurement. Using additional vantage points would be redundant.
Identifying ingresses. revtr 2.0 issues record route measure-
ments every week from each of its vantage points to each IPv4 BGP
prefix for which responsive destinations can be identified [33] in
order to identify the prefix’s ingresses. Identifying the ingresses
of a BGP prefix is complicated by measurement artifacts that can
obscure the topology, such as the fact that different routers stamp
RR packets with different types of IP addresses, i.e., inbound, out-
bound, loopback, or even private IP addresses [70]. As a result, the
ingress of a BGP prefix on an RR path might not be the first IP
address in that prefix. Figure 4 shows an example, using letters to
represent prefixes and numbers to identify addresses. Given an RR
path [𝑌1, 𝑋1, 𝐷4, 𝐷1] from 𝑉1 to 𝐷1, using the first IP address in the
BGP prefix would identify 𝐷4 as the ingress, although 𝑋1 is the real
ingress, which we can not identify easily because 𝑋1 is not in the
BGP prefix. A mistake in determining the ingresses can hurt revtr
2.0 performance. If revtr 2.0 infers that vantage points share an
ingress whereas they do not, some vantage points able to reveal

V1

V2

V3
V4

Y1
X1

D3

D4

D2

BGP prefix D

Destination AS

D1

Figure 4: Example of topology where it is non-trivial to find

the ingress of a BGP prefix D with a path revealed with RR,

as the ingress router (at the border of D) responds with 𝑋1,
an IP address in prefix X.

reverse hops may be skipped, possibly hurting accuracy, coverage,
and throughput. If it infers that vantage points do not share an
ingress but they do, it can issue redundant measurements, adding
probing overhead and reducing throughput.
Probing multiple destinations in a prefix to identify possible ingresses

(candidates): If the only destination in 𝐷 that we probe is 𝐷1, 𝐷4
appears to be𝑉1’s ingress (first IP in the prefix). However, 𝐷4 is not
on the path to 𝐷2. A better choice would be 𝑋1, on the path to both
𝐷1 and 𝐷2. To guard against choosing a hop that is not traversed
by all paths from a VP to destinations in that prefix (i.e., that is
after the real ingress), we send probes to two destinations in the
BGP prefix and consider as ingress candidates IP addresses on both
paths (up to and including the first IP address in the BGP prefix).
The ingress candidates would be {𝑌1, 𝑋1} for𝑉1, {𝑋1} for𝑉2 and𝑉3,
and {𝐷3} for 𝑉4. For 87.2% of prefixes, measurements to additional
destinations went through the same candidates, suggesting two
usually suffices.
Selecting from candidates with views from multiple VPs: revtr 2.0
greedily selects candidates to (set) cover vantage points. In Figure 4,
we would start by picking 𝑋1 as it covers three VPs (𝑉1, 𝑉2 and
𝑉3), and then 𝐷3, which covers the remaining VP (𝑉4). If multiple
ingresses are tied for covering the most VPs, we choose one at
random.
Coping with destinations that do not stamp RR packets: If a packet
does not include addresses from the destination prefix, it could be
because it was not reached, or because routers in the destination
prefix do not stamp RR packets (at least not with addresses from
the destination prefix). We developed heuristics that still identify
ingresses in some of these cases. We infer that a RR has reached
the destination if it contains a loop, which happens when a hop ℎ
is traversed on the forward path, the RR reaches the destination,
and hop ℎ is traversed again on the reverse path (Appx. C). With
this heuristic, revtr 2.0 is able to find ingresses for 97.7% of the
BGP prefixes with at least one vantage point in range.
Ordering and batching measurements: When measuring re-
verse paths, revtr 2.0 issues measurements only from the vantage
point closest to each ingress, ordering the ingresses by the number
of vantage points that use them. For the 2.3% of prefixes without
identified ingresses, revtr 2.0 ranks vantage points within 8 hops
by their mean distance to the two destinations. revtr 2.0 issues
measurements from a batch of 3 vantage points at a time (§5.3),
stopping when a batch reveals one or more reverse hops, or all
ingresses have been tested. If the measurement from a vantage
point does not go through the expected ingress, revtr 2.0 tries the
next closest vantage point to the ingress. If five vantage points in a
row fail to uncover the ingress, it gives up on that ingress.
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Given that we have shown that routes are generally destination-
based and stable (Insights 1.1 and 1.4), revtr 2.0’s approach is
based on a solid topological understanding of routing, will reliably
identify and try the most valuable vantage points, and provides
logical stopping conditions. Section 5.3 demonstrates that it works
well in practice.

4.4 When unable to measure a hop, assume

intradomain hops are symmetric (Q5)

As Reverse Traceroute is measuring a path back incrementally from
the destination towards the source, it will be unable to measure
from the current hop if the hop does not appear on any paths in
the traceroute atlas and either does not respond to record route
or is not found to be within range of any vantage points. At this
point, Reverse Traceroute can either make a guess for the next
hop or give up. revtr 2.0 runs a traceroute from the source to the
current hop and assumes that the penultimate hop of the traceroute
is on the reverse path if it is in the same AS as the current hop.
If it is in a different AS, revtr 2.0 aborts the path measurement
because the next hop toward the source cannot be reliablymeasured,
as our study shows that 90% of intradomain links are traversed
symmetrically, whereas it is only 57% for interdomain links.

Methodology. We evaluate how often it is correct to assume sym-
metry: how often is the last router on the forward traceroute from
S to R also on the reverse path? To reveal reverse hops, we issue
(spoofed) RRmeasurements to R spoofing as S, choosing the vantage
points using the technique described in Section 4.3. If we uncover
at least one reverse hop, we can classify the penultimate traceroute
hop as on the reverse path, not on the reverse path, or unknown.
The penultimate traceroute hop is on the reverse path if it or one of
its aliases (Appx. B.1) appears among the reverse hops. Conversely,
the penultimate traceroute hop is not on the reverse path if it is
responsive to SNMPv3 (which provides reliable alias information
[17]) but is not found among the reverse hops. This condition comes
from the two following results: of the 30.5% of routers in the CAIDA
ITDK dataset [6] that have at least one IP address that responds
to SNMPv3, we find that 81.4% are responsive on all IP addresses
identified by CAIDA as belonging to the router, and 94.8% respond
with the same SNMPv3 identifier from all addresses, meaning that
the identifier can be used to cluster aliases. Finally, if the penul-
timate traceroute hop does not appear in the reverse hops and is
unresponsive to SNMPv3, it is unknown whether its router is on
the reverse path because we lack reliable alias information.

Dataset and results. This methodology requires a dataset with
many SNMPv3-responsive penultimate traceroute hops. Many
router interfaces in the Internet are allocated a /30, so, if an address
is responsive to SNMPv3, targeting the other address of the /30
might go through that router. Therefore, for each IPv4 address in a
dataset of those that respond to SNMPv3 [17], we extract the other
IP address of its /30 as a target. For each target, we apply the above
methodology using 5 random M-Lab sites out of the 146, obtaining
1,530,960 paths for which we measure a reverse hop to evaluate.
Table 2 shows that the penultimate hop is on the reverse path in
90% of the cases for intradomain links, whereas it drops to 57% for

Yes No Unknown Yes
Yes+No

Intradomain 0.68 0.07 0.25 0.90
Interdomain 0.42 0.32 0.26 0.57

All 0.60 0.14 0.25 0.81

Table 2: How frequently the penultimate hop of a traceroute

is also on the reverse path.

interdomain ones (omitting unknown cases), justifying that revtr
2.0 only keeps hops from intradomains symmetry assumption.

IP to AS mapping. revtr 2.0 uses a technique from our recent
work [20] to perform IP to AS mapping (Appx. B.2). As revtr 2.0
relies on mapping border routers to their ASes to decide if a link
is intradomain or interdomain, we investigated using bdrmapit, a
more complicated technique to infer the AS ownership of border
routers [63]. bdrmapit is too slow to run online, and so we eval-
uated using it on revtr 2.0’s traceroute atlas (which is measured
offline) to justify our decision to not use it. Since revtr 2.0 dis-
cards reverse traceroutes rather than assuming interdomain hops
are symmetric, the key question is whether using bdrmapit as
opposed to our technique switches assumed hops (that intersect the
traceroute atlas, where bdrmapit can be applied) from intradomain
to interdomain, or from interdomain to intradomain. We found
bdrmapit classified 0.03% of reverse traceroutes as containing an
interdomain assumption of symmetry that our technique classi-
fied as intradomain. In these cases, our technique will result in
revtr 2.0 retaining suspect measurements, potentially impacting
accuracy although it is also possible that bdrmapit is wrong or
that the symmetry assumption happens to be right. bdrmapit also
classified 0.6% of reverse traceroutes as containing intradomain
assumptions of symmetry that our technique classified as interdo-
main. Since revtr 2.0 would discard these measurements to avoid
assuming interdomain symmetry, our simpler technique may com-
promise revtr 2.0’s coverage on these paths as compared to using
bdrmapit. Please see Appendix B.2 for details. However, running
bdrmapit on the revtr 2.0 server on revtr 2.0’s traceroute atlas
takes around 30min. During that time, the traceroute atlas is not
available, leaving two possibilities: increasing staleness by using the
previous atlas (reducing accuracy), or increasing the number of RR
probes by not using a traceroute atlas (reducing throughput). Given
these tradeoffs and the low impact of bdrmapit on our system, we
opted not to use it.

5 EVALUATION

Overview: revtr 2.0 improves correctness by 40% compared to
performing forward traceroutes and assuming symmetry all along
the forward paths as an alternative to measuring reverse paths,
and improves completeness by 41% compared to using all vantage
points from RIPE Atlas to measure reverse paths (§5.1). revtr 2.0
supports a throughput of 173 reverse traceroutes per second (≈15M
a day), 43× higher throughput than revtr 1.0, and provides better
accuracy for a reasonable coverage loss (§5.2). Our ingress-based
technique to select vantage points requires more than 10 probes
for less than 5% of BGP prefixes, compared to 28% of prefixes for
revtr 1.0 (§5.3). Our traceroute atlas provides 89% of the optimal
savings with simple, randomized probing and converges to optimal
in five days. Less than 1% of atlas traceroutes become stale before
they are refreshed (Appx. D.2).



Internet Scale Reverse Traceroute IMC ’22, October 25–27, 2022, Nice, France

Correctness Completeness
revtr 2.0 1.00 0.55
RIPE Atlas 1.00 0.06
Forward traceroutes + assume symmetry 0.60 0.78

Table 3: Reverse AS graph correctness and completeness if

we measure reverse paths using revtr 2.0, RIPE Atlas, or

assume they are symmetric.

5.1 Large-scale evaluation

Measurements:We use revtr 2.0 and traceroute to measure both
directions of routes between a ping-responsive host in each routed
BGP prefix [3] and 146 M-Lab sites. We use ISI’s hitlist of ping-
responsive hosts [33], but they are not necessarily record route-
responsive.We run 101M reverse and forward traceroutes Dec. 8–14,
2021. We obtained complete reverse traceroutes for 31M paths, and
complete forward traceroutes for 57M paths. Of the 31M complete
reverse traceroutes, 7.3M (24%) contain an intradomain symme-
try assumption, showing the improved coverage enabled by these
(usually correct (§4.4)) assumptions. The remaining 76% contain no
assumptions of symmetry, meaning that revtr 2.0 measured them
completely using a combination of record route and its traceroute
atlas and demonstrating the coverage of its techniques.
Throughput: revtr 2.0 measured ≈15M reverse and forward
traceroutes per day during the collection of our large-scale
campaign, or about 173 reverse traceroutes per second overall.
This is a lower bound on throughput as it includes failed reverse
traceroutes and the execution of a forward traceroute from the
M-Lab node to each destination. We are investigating remaining
bottlenecks.
Comparison with existing approaches: The map of reverse
paths towards an AS can help the AS with traffic engineering
[82], identifying route hijacks [83], locating routing failures [53],
understanding route changes [49], and identifying sources of
spoofed DDoS attacks [36]. To understand how well different
approaches could enable these use cases, we compare how much
of the AS-level Internet can be correctly uncovered using three
techniques to obtain reverse paths: revtr 2.0, RIPE Atlas, and
issuing forward traceroutes and assuming paths are symmetric. We
use our large-scale bidirectional measurements for revtr 2.0 and
forward traceroutes; for RIPE Atlas, we collect forward traceroutes
to M-Lab nodes from all RIPE Atlas Probes.

For each technique, we identify the AS-level links used by each
AS in the Internet to route towards a given source. RIPE Atlas
traceroutes and reverse traceroutes identify correct links as they
accurately measure the paths (§5.2.2), and so we compute the cor-
rectness of using forward traceroutes as the fraction of links inferred
correctly (i.e., the fraction where the assumption of symmetry is
true). We also compute completeness as the fraction of ASes in the
Internet (72,272 in a December 2021 BGP dump) for which a tech-
nique can infer an AS link used to route towards the M-Lab node
(averaged across all nodes and ignoring whether the inferred link
is correct).

revtr 2.0 could measure at least one reverse path from des-
tinations in 39,544 ASes, which host 92.6% of the Internet users.
This number includes additional transit ASes seen in the reverse
paths that do not host Atlas vantage points or destinations. RIPE
Atlas vantage points can measure from destinations in 4,344 ASes,

representing 67.1% of the Internet user base [7]. Table 3 shows
that without revtr 2.0, one can either have high correctness (1.0)
but low completeness (0.06) with RIPE Atlas’s limited number of
vantage points, or better completeness (0.78) with low correctness
(0.60) by assuming all paths are symmetric. revtr 2.0 provides both
correctness (1.0) and good completeness (0.55).

The completeness per source of revtr 2.0 is also good: across
sources, the median number of ASes from which revtr 2.0 could
measure at least one reverse path from destinations was 35.4K ASes.
Of the 146 sources, 133 of them completed a reverse traceroute
from destinations in more than 30K ASes. Of the 13 sources with
worse coverage, 11 represent all M-Lab sites hosted in two providers,
suggesting that these ASes are challenging for revtr 2.0 to measure,
perhaps for topological reasons (out of record route range) and/or
configuration reasons (filtering or not responding to probes). Even
these ASes are far from cloaked from revtr 2.0: for the M-Lab
source with the worst completeness, revtr 2.0 was still able to
measure routes from 19K ASes (completeness=0.26), vastly more
than any existing technique with high correctness.

5.2 Comparison with revtr 1.0

5.2.1 Setup and replicating earlier algorithms. To compare designs
rather than instantiations, we: (1) use our new codebase to reim-
plement revtr 1.0, using the original code as a guide; (2) let it use
the same set of vantage points for spoofed RR packets as revtr 2.0
(i.e., the 146 M-Lab sites); (3) and let it use the same traceroute atlas
as revtr 2.0, but without our new IP aliasing technique (§4.2). For
adjacencies for the timestamp technique (§2), we extract the links
found in the Ark traceroutes from the two previous weeks before
our measurements. As potential adjacencies are tested at runtime,
the accuracy is not sensitive to adjacency staleness.

We compare revtr 1.0 and revtr 2.0 measuring 8,093 reverse
traceroutes from randomly selected RIPE Atlas probes to the 146
M-Lab sites. We compare reverse traceroutes to direct traceroutes
from RIPE Atlas to M-Lab to assess accuracy, despite challenges in
using the direct traceroute as approximate ground truth (§5.2.2).
We provide revtr 1.0 and revtr 2.0 with a traceroute atlas of 1000
traceroutes from randomly selected RIPE Atlas probes to each M-
Lab source. When measuring a particular reverse traceroute, we
do not allow the systems to access the direct traceroute or other
traceroutes from the same AS. Of the 8,093 attempted reverse tracer-
outes, revtr 1.0 measured 8,093 completely. Of these, 7,275 direct
traceroutes reached the sources, allowing a comparison. revtr 2.0
measures 5,682 of 7,275 (78.1%) paths completely and discards the
rest to avoid assuming interdomain symmetry (§4.4).

Our comparison between revtr 1.0 and revtr 2.0 is limited
to vantage points that can run direct traceroutes to sources, and
thus comprises only 8,093 reverse paths covering 1,808 ASes. This
dataset and the large scale evaluation dataset (§5.1) have equivalent
properties for keymetrics we check including the fraction of reverse
paths with symmetry assumptions, the number of hops assumed
symmetric per path, and the number of RR probes sent per path,
suggesting the smaller set is representative. The only figure that
has a significant difference is the fraction of the reverse paths that
completed successfully. It is 78% in this dataset (Fig. 5b) vs 53% in
the large scale dataset (§5.1), likely because the RIPE atlas probes
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Figure 5: (a) revtr 2.0 has better accuracy than revtr 1.0. (b) It achieves this by not using untrustworthy assumptions that

are likely to be inaccurate, sacrificing some coverage. (c) It also has much lower latency than revtr 1.0.

used as destinations in this dataset are all configured to respond to
record route.

5.2.2 Accuracy. Figure 5a shows the fraction of hops in the direct
traceroute also seen in the reverse traceroutes at router and AS
granularities. Alias resolution and IP-to-AS mapping techniques
are detailed in Appendix B. There are different reasons why this
fraction might be less than 1: (1) The path returned by Reverse
Traceroute is wrong, because it was forced to assume symmetry
but was incorrect, or there was a rare violation of destination based
routing that affected accuracy; (2) The path returned by Reverse
Traceroute is correct but incomplete (e.g., private IP addresses in the
middle of the path); (3) The path returned by Reverse Traceroute
is correct and complete but is different from the direct traceroute
path because of load balancing, path change, or IP addresses that do
not allow for alias resolution; or (4) The direct traceroute is wrong
(e.g., in presence of per-packet load balancing). We now show that
revtr 2.0 almost never falls into case (1) and returns a wrong path
(1.5% of paths when considering AS-level paths), whereas it is more
likely to happen for revtr 1.0 (8.3% of paths); and that the main
cause of discrepancies between revtr 2.0 and direct traceroute
paths is the incompleteness of alias resolution techniques.

AS-level accuracy: The revtr 2.0 AS line of Figure 5a shows that
5,246 of the 5,682 (92.3%) revtr 2.0 reverse paths match the di-
rect traceroute AS path, compared to 5,949 of the 7,275 (81.8%) for
the revtr 1.0 AS line. Of the 436 (7.7%) reverse traceroutes with
discrepancies, 348 (6.1%) are cases when the reverse traceroute is
incomplete, missing an AS hop, rather than wrong. Similar to how
traceroute can return an incomplete path due to factors includ-
ing unresponsive routers (“*”) and hidden MPLS tunnels, Reverse
Traceroute also can miss hops due to certain router configurations,
such as routers that stamp RR packets with private IP addresses (that
cannot be mapped to ASes) and routers that forward RR packets
without stamping them. revtr 2.0 can flag many of these mea-
surements as potentially missing hops, even without access to the
forward traceroute. Private IP addresses are directly seen in the IP
level path, while we check for possible cases of routers that forward
without stamping by translating the IP-level reverse traceroute
into an AS level path and checking for suspicious AS links. We
consider an AS link to be suspicious if the link is between a small
AS 𝑠 and a provider 𝑝 of one of 𝑠’s providers, and there is no known
relationship between 𝑠 and 𝑝 in CAIDA’s AS relationship dataset

[58]. We consider an AS to be small if it has ≤ 5 providers and ≤ 10
ASes in its customer cone [58]. When a suspicious link is identified,
revtr 2.0 adds a “*” between the two hops, which occured on 10%
of reverse traceroutes. For the 90% without “*”, 98.3% (5,025 of 5,113)
are correct and complete at the AS level.

For the remaining 88 (1.5%) revtr 2.0 measurements with an
AS path mismatch beyond a simple missing hop, it could be due
to a route change in the interval between the reverse traceroute
and direct traceroute measurements, or it could be an error. Errors
can be caused by violations of destination-based routing, which
Reverse Traceroute assumes holds. We checked for violations by
replicating the methodology and updating the results of our prior
work [34]. We find that only 6.6% of the 4,974,090 (hop, source)
pairs that we test violate destination-based routing and only 1.1% of
the (hop, source) pairs would affect revtr 2.0 accuracy at AS level
(Appx. E). For revtr 1.0, of the 1,326 (18.2%) reverse AS paths that
do not match the direct AS path, 604 (8.3%) have an interdomain
symmetry assumption and an AS that does not appear in the direct
AS path, strongly suggesting that those paths are wrong.

Router-level accuracy: Our analysis above suggests that 1.5% of
revtr 2.0measurements have errors in their AS-level paths beyond
a simple missing hop, but it is possible that more measurements
have errors at finer granularities. Evaluating accuracy at router
level is more difficult due to load balancing and incomplete alias
information: 75% of the direct traceroute hops not seen in revtr 2.0
paths do not allow for alias resolution, along with 81% of the extra
hops seen by revtr 2.0 that do not appear in the direct traceroute
path. To corroborate that revtr 2.0 does not return incorrect paths
and that our ability to match routers seen in traceroutes is limited
bymissing alias information, we compute the samematchingmetric
after eliminating revtr 2.0 errors as a possible explanation for dis-
crepancies: for each of our 8,093 source-destination pairs, we send
an RR packet and a traceroute on the forward direction from the
M-Lab sources to the RIPE Atlas probes, so that the path returned
by RR is necessarily correct as it is extracted from a single packet.
The forward record route lines show the 3,919 source-destination
pairs where the RR packet reached the destination within 9 hops
(so recorded the full path). We see that the forward record route
lines are slightly below revtr 2.0, with a median of 60% of tracer-
oute routers also appearing in RR, as opposed to 67% for revtr 2.0,
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showing how hard it is to align RR and traceroute hops even when
we know that the RR path is correct.

At the AS granularity, the forward record route line is similar to
that of revtr 2.0, showing that revtr 2.0 achieves similar accuracy
to a technique with a correct path. Finally, the router optimistic

line shows the accuracy if all of the direct traceroutes hops that
do not allow for alias resolution were actually on the reverse path,
showing that the fraction of accurate reverse paths goes up from
25% to 68%. The real fraction of direct traceroute hops also seen in
the reverse traceroute hops should lie in the shaded area, and it is
probable that some of mismatches beyond the shaded region are
due to traceroute and revtr 2.0 measuring different valid paths in
the presence of load balancing.

5.2.3 Coverage. We define the coverage as the percentage of re-
verse paths completely measured (i.e., not aborted by revtr 2.0
to avoid assuming interdomain symmetry) out of the number of
reverse path measurements attempted.

Figure 5b shows the cost in coverage of making revtr 2.0 more
accurate than revtr 1.0 (Fig. 5a): revtr 2.0 can measure 6,322
(78.1%) of the reverse paths compared to 8,093 (100%) for revtr
1.0. However, with revtr 2.0, one can trust at least 98.5% of the
reverse paths returned, whereas revtr 1.0 gave no indication of
which paths were likely accurate, eroding confidence in all paths
returned, as at least 8.3% of the paths were wrong (§5.2.2). revtr 2.0
still has solid coverage, as it can measure at least one reverse path
from 39,544 out of 72,272 ASes (§5.1). Figure 5b demonstrates that
adding timestamp measurements would only increase the number
of successful reverse traceroutes by 85 (1%), even given perfect
(unrealistic) information about adjacencies (Appx. D.1). To save
probes and promote throughput, revtr 2.0 does not use timestamp.

A key determinant of coverage is whether routers are responsive
to and within range of record route. We update the results of our
2016 work [39], finding that record route responsiveness is similar
to what we found in 2016 andmuch higher than had been previously
thought. With revtr 2.0’s deployment, at least one vantage point
is within 8 hops of (and hence able to measure reverse hops from)
63% of routers responsive to record route, compared to ≈ 12% in
2011 (Appx. F, Fig. 2 of RR paper [39]). The improvement is a result
of the expansion of M-Lab and the flattening of the Internet [39].
We have spoken with the M-Lab team about future expansion to
further improve this number.

5.2.4 Scalability. We evaluate three aspects of the scalability of the
system: the throughput, the number of packets sent, and the time to
measure a reverse traceroute. revtr 2.0 can run 15M reverse tracer-
outes a day (§6.2), for a throughput of 173 per second. We calculate
revtr 1.0’s throughput from our reimplementation (§5.2.1), which
took 1,975 seconds to run 8,093 reverse traceroutes, i.e., 354K a day
or 4 per second. Table 4 shows the different types of packets sent
by revtr 1.0 and revtr 2.0, along with the incremental benefits of
the new components, namely:

revtr 2.0 = revtr 1.0 + ingress + cache - TS + RR atlas
(1)

where ingress refers to our new technique to select record route
vantage pionts based on their ingresses to the destination network

Type of packet RR Spoof RR TS Spoof TS Total

revtr 1.0 14,952 220,186 35,961 4,130 275,229
revtr 1.0 + ingress 13,669 97,400 35,745 3,810 150,624

revtr 1.0 + ingress + cache 12,708 64,310 35,765 3,925 116,708
revtr 1.0 + ingress + cache − TS 12,690 64,435 0 0 77,125

revtr 2.0 = revtr 1.0 +
ingress + cache − TS + RR atlas 11,831 61,080 0 0 72,911

Table 4: Number and type of packets sent, with incremen-

tal improvements. revtr 2.0 sends 26% as many probes as

revtr 1.0.

(§4.3), cache corresponds to reusing traceroute and RR measure-
ments for a day across multiple reverse traceroutes (Appx. D.2.2),
TS stands for IP timestamp (which revtr 2.0 no longer uses), and
RR atlas refers to our new technique to increase the number of
intersections between RR probes and the traceroute atlas (§4.2).

Overall, revtr 2.0 sends 26% as many probes as revtr 1.0 (73K
vs 275K). Table 4 shows that most (125K) of the probe savings
come from our new vantage point selection technique to send RR
probes (§4.3). Each of the other components also contributes to the
rest of the savings, namely: 34K for the cache, 39K for not using
TS, and 4K for the RR atlas. The RR atlas does require sending
RR packets, but the overhead is small compared to a long run of
the system: revtr 2.0 measures 15M reverse traceroutes in a day
(§5.1), requiring 127M RR packets overall and 1M for the atlas
technique. The traceroute intersections enabled by the RR atlas
saved an additional 5.5% RR probes on our evaluation dataset, so
we estimate it saved approximately 47M RR probes across the 101M
reverse traceroutes of our large scale survey (§§ 5.1 and 6.2).

Figure 5c shows the CDF of run times for individual reverse
traceroutes. The improvement between revtr 1.0 and revtr 2.0 is
large: the median run time decreases from 78 seconds to 6 seconds.
The improvement is due to the new record route vantage point
selection technique, and the savings of the other parts of the system
marginally reduce the time. The improvement is mainly due to how
the spoofing implementationworks: when the system sends spoofed
packets, we set a timeout. This timeout must be set high enough
to handle queuing delay on the vantage point and unpredictable
latency. We empirically set this timeout to 10 seconds as only a few
packets come back after the timeout and are therefore dropped, and
each batch (§4.3) of spoofed packet incurs an additional 10 seconds
to complete a reverse traceroute.

5.3 Picking RR vantage points

To evaluate revtr 2.0’s ingress-based technique for selecting RR
vantage points (§4.3), we collect RR pings from our 146 M-Lab
vantage points to 20 destinations in each of the 41,028 BGP prefixes
seen in reverse or direct traceroutes (§5.2). We require each prefix
to have at least three responsive destinations in the evaluation: two
destinations to infer the ingresses needed by revtr 2.0 to choose
the vantage points, and a third to evaluate. Of the 41,028 prefixes,
26,169 satisfy this condition. Across these 26,169 prefixes, we have
on average 9.6 responsive destinations, so the revtr 1.0 set cover
[52] is computed on a reasonable number of destinations.
Throughput: Two metrics impact the throughput of the system as
a function of the batch size (number of vantage points attempted per
measurement round): the number of batches tried before finding a
reverse hop, and the number of reverse hops revealed by that batch
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(c) revtr 2.0 tries fewer vantage points.

Figure 6: Comparison of techniques to select record route vantage points.

Fraction of BGP prefixes
Ingress 0.65
Ingress + double stamp 0.70
Ingress + double stamp + loop (revtr 2.0) 0.71
revtr 1.0 0.72
Optimal 0.72

Table 5: Fraction of BGP prefixeswhere techniques find aVP

within 8 RR hops of the destination.

(both revtr 1.0 and revtr 2.0 stop whenever they find a reverse
hop). Figure 6a shows the number of uncovered reverse hops by
the first batch, for three different batch sizes. This parameter is
crucial for scalability, as each batch adds 10 seconds to the reverse
traceroute measurement time (§5.2.4). A batch size of 3 is a good
compromise as increasing the batch size to 5 does not increase the
number of discovered reverse hops further.

Figure 6b shows the CCDF of the number of uncovered reverse
hops by the first batch (with a size of 3) by revtr 1.0, revtr 2.0, and
by greedily trying the vantage points that are within range of the
most prefixes globally (Global) [39]. The Optimal line shows the
result if we used the closest vantage point for each prefix, and its Y
intercept shows that, for all techniques, the vast majority of desti-
nation prefixes in which the first batch uncovers no reverse hops
are destinations for which no vantage point can measure reverse
hops. revtr 2.0 is nearly optimal and largely outperforms revtr
1.0, which only discovers 4+ hops for 20% of prefixes compared to
50% of prefixes for revtr 2.0.

Figure 6c shows the CCDF of the number of vantage points tried
per BGP prefix for the three techniques before it either finds a
reverse hop or gives up. revtr 2.0 sends fewer probes. It tries 10+
vantage points for <5% of prefixes, versus 28% for revtr 1.0 and
Global. It tries 100+ vantage points for <1% of prefixes, versus at
least 18% for revtr 1.0 and Global.
Coverage: Table 5 indicates that 72% of prefixes had a vantage
point in range (Optimal). revtr 2.0 found one for 71%.

6 EXAMPLE USE CASES

revtr 2.0 meets the needs of our goal use cases (§3): on-demand
operational use (§6.1) and large-scale topology mapping (§6.2).

6.1 Supporting traffic engineering

Context and motivation: Large providers like Microsoft, Google,
and Facebook anycast their announcements from PoPs all around
the world to thousands of peers [20, 26, 35, 80, 82]. This implies that
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Figure 7: Ingress traffic engineering using PEERING and

revtr 2.0, shifting suboptimal Cogent routes toward US

sites (left) andmore evenly distributing routes across PEER-

ING’s AMS-IX providers (right).

where traffic enters their networks and which sites serve clients de-
pend on the routing decisions of other networks. The performance,
availability, and load on these services depend on how clients route
to them. Providers have both limited visibility into and control
over these decisions [57, 74, 77]. From speaking to operators at
these companies in 2022, we know that some still lack visibility
into routes to their prefixes. revtr 2.0 provides a robust basis for
traffic engineering (TE), yielding heretofore impossible precision
to decisions on how to manipulate routing to achieve TE goals.
Methodology:We anycast a prefix from 7 PEERING locations [67]
and choose destinations to monitor using an approach similar to
proposals for how CDNs can choose representative monitoring
targets [44, 82]: We group prefixes that have similar routing (nor-
malized routing state distance less than 0.02 [45]) and pick the 15,300
groups with the most Google/M-Lab Speed Test measurements as
a coarse measure of user activity, since Akamai argued that 15,300
targets can represent its clients in a recent study [82]. A contact at
a global content provider reported that the chosen groups represent
70% of demand at the content provider. Within each group, we pick
the prefix with the most Speed Test measurements. We then use
as destinations all ingresses into these prefixes (§4.3), in order to
follow CDN practice and probe routers at key convergence points,
rather than end hosts. We deploy a revtr 2.0 source on the anycast
PEERING prefix and use revtr 2.0 to measure the resulting routes.
Steering users to different sites: We first consider the case of
a CDN attempting to group clients and steer them to different
sites in an attempt to improve performance [35, 44, 82]. Figure 7
(left) considers an example of TE focusing on routes to PEERING
traversing Cogent. revtr 2.0 reveals that Cogent chose routes
toward Northeastern University (NEU) in Boston (73.3% of reverse
traceroutes through Cogent), UFMG in Brazil (13.2%), and other
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sites. Cogent routers in the southeastern US chose routes to Brazil,
which inflated latency for Cogent clients such as Leaseweb and the
North Texas GigaPoP. We attempted to address this by poisoning
Cogent on the announcement fromUFMG to force Cogent to choose
other sites [53]. Using Cogent’s BGP communities to manipulate
route preferences instead of poisoning would also suffice [8]. A
second round of reverse traceroutes after the poisoning confirmed
that 86.5% of routes through Cogent went to the PEERING site at
NEU, and that RTTs to Leaseweb improved by 70ms and to North
Texas GigaPoP by 99ms. Without access to revtr 2.0, we would
not have known how to manipulate advertisements to improve
performance. For example, the forward path to North Texas GigaPoP
is direct and does not traverse Cogent, and so traceroute would not
have identified the AS causing the inflation.
Balancing load between providers: Figure 7 (right) considers
a TE example focusing on balancing catchments between PEER-
ING’s two providers at AMS-IX, Coloclue and BIT. In the default
anycast announcement, revtr 2.0 reveals that 91.2% of destina-
tions use Coloclue and 8.8% use BIT. Most of the networks reached
Coloclue through Fusix, a Dutch transit provider. We used Colo-
clue’s no-export large BGP community [5] to tell Coloclue not to
export our prefix to Fusix. A second round of reverse traceroutes
revealed that Fusix chose a route through True, another Dutch
provider, which itself routed through Coloclue, and most networks
continued to route via Fusix. For example, most routes through
Level3 used Fusix in both configurations. We updated the TE to
add Coloclue’s no-export communities for both Fusix and True.
A third round of measurements revealed that Fusix had chosen a
route through Telia (not shown), which it probably did not export
to Level3. Level3 routes shifted to NTT and BIT, achieving a more
even 60.5%:39.5% split of destinations between Coloclue and BIT,
as intended. Although Fusix’s route now traverses a tier-1 network,
the RTT between routers in Fusix and PEERING’s AMS-IX site did
not change significantly and remained below 2ms, indicating that
Fusix clients would not experience performance degradation if a
CDN performed similar TE. This sort of targeted TE is challenging
without the visibility provided by revtr 2.0, leading Google to
conclude that it “needs [and lacked] the ability to gather informa-
tion about the reverse path back from clients to Google’s nodes” to
debug performance problems [56] and causing Akamai to limit a
recent TE system to coarse route optimization [82].
revtr 2.0 supports quick iteration: Reverse traceroute mea-
surements took 9–13 minutes per routing configuration, similar to
the other required steps: 15 minutes to wait for BGP convergence
and avoid route flap dampening [36, 41, 53, 71, 82] and 15 minutes
to refresh the atlas. revtr 2.0 can be integrated into automated TE
systems, providing scale and coverage that cannot be matched by
querying operators or looking glasses.
revtr 2.0 in other TEwork: In parallel work [85], we used revtr
2.0 to debug new approaches we suggested for CDN route announce-
ments that better balance control (directing users to particular sites)
and availability (fast failover following site failure). We prototyped
the approaches on our Peering testbed [67] and used revtr 2.0 to
investigate instances of poor control, measuring the reverse paths
from the client networks back to the PEERING sites when they were
directed to undesired sites. revtr 2.0 provided valuable information
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for troubleshooting routing configurations and poor performance
that would traditionally be unavailable to CDNs [82].

6.2 Measuring asymmetry at scale

Route asymmetry can lead to differences in one-way latency [31, 65],
which degrade clock synchronization mechanisms [46], Internet
latency-based positioning systems [78], and interactive applica-
tions such as gaming and videoconferencing. Route asymmetry
also complicates failure and performance troubleshooting [51, 53].
Unfortunately, our understanding of routing asymmetry in the In-
ternet is limited due to our previous inability to measure reverse
paths at scale. We use our bidirectional measurement campaign
(§5.1) to perform a study of path asymmetry in the Internet of un-
precedented scale. We report on asymmetry over 30M paths for
which we measured complete forward and reverse paths, where
prior work had considered 120K reverse paths using RIPE Atlas [30].
More importantly, revtr 2.0 allows one to compute asymmetry be-
tween vantage points (including in the cloud) and any destination
of interest. We quantify path symmetry as the fraction of hops on
the forward traceroute that are also on the reverse traceroute.

Overall asymmetry: Figure 8(a) shows the CCDF of symmetry at
different granularities. Paths exhibit significant asymmetry. Only
53% of paths are symmetric even at the coarse AS granularity (where
the ‘AS’ line meets the 𝑥 = 1 axis in Fig. 8(a)). Asymmetry is even
greater at the router granulary, with half the reverse traceroutes
including less than 28% of the routers in the forward traceroute
(where the ‘router’ line crosses 𝑦 = 0.5). Computing asymmetry
at the router granularity is challenging due to load balancing and
missing aliasing information (§5.2.2). Figure 5a showed that, in the
median case, a reverse traceroute would miss 33% of the routers
seen by a forward traceroute issued in the same direction, and so
we would expect to (falsely) infer 33% asymmetry even if the paths
were symmetric. Combining these, we estimate that the median
reverse path could share up to 28% + 33% = 61% of the hops on the
forward path, missing at least 39% of the hops due to asymmetry.
We also find that paths are more often symmetric near sources and
destinations than in the middle (Appx. G.2) and that our results
uphold much smaller previous studies (Appx. G.3).

Asymmetry and the Internet hierarchy: Figure 8(b) shows a
scatter plot of the fraction of measurements where an AS was part
of an observed AS-level asymmetry as a function of the AS’s cus-
tomer cone size [58]. Large transit providers appear on many AS
paths, and the relationship between customer cone sizes and asym-
metry indicates that large networks are also frequently involved in
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asymmetric routing, with tier-1 networks occurring on many asym-
metric paths. Some networks with few customers have a dispropor-
tionately large presence in asymmetric routes, i.e., ASes towards
the top left of Figure 8(b). Manual inspection of these networks
reveals national research and education networks (NRENs) and re-
gional providers. The red circles are four NRENs: Brazil’s National
Network for Research and Education (AS1916), Japan’s National In-
stitute of Informatics (AS2907), the Greek Research and Technology
Network (AS5408), and GEANT (AS20965 and AS21320). NRENs
show up frequently on forward traceroutes from a fewM-Lab nodes
hosted on education and research institutions (which get transit
from NRENs, known to peer widely and employ a multi-AS “cold
potato” policy), but reverse traceroutes from remote destinations
often reach M-Lab nodes in education and research institutions
through a regional commercial ISP. For example, traceroutes from
mnl01 in the Philippines go via Japan’s National Institute for Infor-
matics (AS2907) to NTT, while reverse traceroutes from destinations
reach mnl01 through Converge (AS17754), a regional ISP.

6.3 Other use cases

A security company has been using the demo version of our Reverse
Traceroute system [12] to identify hidden providers on reverse
paths to facilitate takedown of malicious activity. We expect other
uses to emerge as we open the system, e.g., using bidirectional path
information in tomography measurements [52, 84].

7 RELATEDWORK

All the related work on measurement techniques [37, 51, 69, 70],
techniques for inferring reverse path information [51, 61, 62, 64, 81],
and systems that would benefit from reverse path information [27, 32,
42, 50, 59, 62, 79, 83] cited in the original Reverse Traceroute paper
[52] still benefit from this work. We focus here on the related work
that has been published since then.
Internet scale traceroute techniques: Techniques exist for fast
forward path measurements at Internet scale [23, 48, 76]. However,
these techniques do not work for measuring reverse paths because
building a reverse path is done incrementally.
Making efficient use of constrained vantage points:Multiple
techniques deal with budget-limited measurements and minimize
route measurement cost to gather the most information within
budget constraints. Systems such as dtrack [28], Sybil [29], and
signals [38] attempt to track path changes to minimize staleness.
We limit the impact of staleness on revtr 2.0, but revtr 2.0 could
adopt such techniques to maintain even more up-to-date measure-
ments. Other solutions reduce probing cost to gather additional
information with traceroute measurements (e.g., load balancers
[18, 40, 75] or subnet topologies [24]). Our work similarly aims to
reduce probing costs. Our technique to find ingresses to select the
record route vantage points (§4.3) is similar to Rocketfuel’s ingress
reduction technique [72]. However, the goal is different, as revtr
2.0 tries to quickly identify the closest vantage point, whereas Rock-
etfuel tries to reduce redundancy and treats each vantage point
using the same ingress as equivalent.
Route asymmetry: Our work extends much smaller studies of
path asymmetry [30, 47, 52]. Appendix G.3 compares our findings
to the most recent characterization [30].

8 ETHICS

This work does not raise any ethical issues, although the active mea-
surements and spoofing aspects of the system may raise concerns.
The probing rate is controlled to not overload the network, limited
to 100 pps per vantage point, a rate that has been shown to not
trigger rate limiting on most networks [39]. Spoofing is controlled
in Reverse Traceroute: the spoofed addresses are addresses of ma-
chines that participate in our system and have explicitly allowed
our system to spoof their addresses.

9 CONCLUSION

We presented revtr 2.0, the first system capable of measuring re-
verse paths at Internet scale. Focusing on the goals of accuracy,
coverage and throughput, we designed a system that made princi-
pled tradeoffs to enable accurate measurement of 15M reverse paths
in a day across 40K ASes, multiple orders of magnitude more than
any prior work. revtr 2.0 allows us to conduct Internet-scale topol-
ogy measurements, such as our study confirming that most paths
are asymmetric, and we demonstrated how operators can use it to
support traffic engineering, load balancing, and troubleshooting
based on knowledge of bidirectional paths.
revtr 2.0 as a service: We run an instance of revtr 2.0 as a
service to the community, open to researchers and network op-
erators. Users can access our service and its distributed vantage
points to run reverse traceroute measurements from destinations
they specify to M-Lab sources or to their own sources. Those who
wish to measure reverse paths toward sources in the system can
do so via the website, or via REST and gRPC APIs. Details on the
implementation and how to join the system, run measurements,
and add a source are given in Appendix A.
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APPENDICES

A OUR OPEN REVTR 2.0 SYSTEM

An open system and open source code: We operate revtr 2.0
as an open system: researchers, operators, and others can sign up
as users of our system, optionally add their own hosts as Reverse
Traceroute sources [15], and request reverse traceroute measure-
ments from destinations of their choice to their sources or our
existing sources. Our system orchestrates the distributed vantage
points to implement the revtr 2.0 approach to service the request,
and it stores the resulting reverse traceroutes as well as returns
them to the requesting users.

Since our system supports users adding their own sources and
requesting arbitrary measurements to them, users can measure
paths of interest without the complexity of deploying their own
instance. We encourage people to use our revtr 2.0 system rather
than running their own instance, because revtr 2.0 needs access to
and careful coordination of vantage points worldwide with specific
and somewhat rare requirements, such as the ability to send spoofed
packets. We do, however, make our code available [14]. It is written
in Go and employs a service-oriented architecture, decisions that
helped us achieve maintainability, efficient use of resources, and
scalability.

System architecture and implementation: Our system consists
of distributed sources, a subset of which also serve as record route
vantage points, and a number of centralized services that coordi-
nate the sources and vantage points, enact the revtr 2.0 measure-
ment logic, request and cache background measurements such as
the traceroute atlas, store measurement results, and so on. Each
centralized service is packaged as a Docker container to simplify
deployment and migration. They run on three servers at North-
eastern University: a storage server, with 24 CPUs, 64 GB RAM
and 3.6TB storage; a server that runs the service to select vantage
points to issue spoofed record route probes (§4.3), with 32 CPUs
and 384 GB of RAM, and a server running all other services, with 8
CPUs and 64 GB RAM.

Currently, revtr 2.0 record route vantage points are deployed
at all M-Lab sites (except the small number that are hosted on
networks that do not allow spoofing or that filter record route
packets).

Adding users and sources: To use our system, researchers and op-
erators request to be added as users in our user database (currently
maintained manually). The database includes two per-user rate lim-
iting parameters that we use to prevent a user from overloading the
system: the number of parallel reverse traceroute measurements
that the user can request, and the maximum number of reverse
traceroute measurements that the user can issue per day, similar to
what RIPE Atlas does [16].

To gain the ability to measure reverse traceroute to their own
hosts, users add them as sources to our system. To add a source,
the user makes a request, and we manually add it to a database list-
ing approved sources. The user can configure whether the source
serves as a record route vantage point to aid in servicing Reverse
Traceroute requests, an option that we disable by default. We sup-
ply a Docker container that the user deploys on the source. The
container automatically connects to our source controller service.

The controller authenticates the source based on the database and
runs a bootstrap process that starts by checking whether the source
can receive record route packets. If successful, the process then re-
quests traceroutes from revtr 2.0 vantage points and RIPE Atlas to
the source to build its traceroute atlas (Q1), as well as record route
probes to the traceroute hops to aid in identifying intersections
(Q2). The bootstrapping process takes around 15 minutes, most of
it incurred by running traceroutes on RIPE Atlas. RIPE has kindly
provided us with RIPE Atlas credits to support revtr 2.0. If a user
wants frequent refreshing of the source’s traceroute atlas, the user
provides additional credits by giving us a RIPE Atlas key that we
associate with the source.

Issuing and storing Reverse Traceroutemeasurements:After
a user is in our database, the user can request Reverse Traceroute
measurements via either REST or gRPC APIs from any destination
to the sources registered in the system. The user can specify options
to tune the request, such as how stale traceroutes are allowed
to be and whether to run a forward traceroute after the Reverse
Traceroute completes. Our documentation provides details [14].

In addition to these on-demand user-driven measurements, we
have a service running on the M-Lab nodes where the NDT ser-
vice is running. NDT is best known as the service backing Google’s
Internet speed test and measures performance between a client
and an M-Lab server. When a client initiates an NDT measurement,
our service requests a reverse traceroute to measure the route from
the client to the same M-Lab server. Whether revtr 2.0 accepts
or rejects the request depends on system load. M-Lab already is-
sues a forward traceroute from M-Lab to the client, which our
measurements complement. Over time, these measurements will
constitute a dataset providing round-trip views of paths with the
NDT-measured throughput and latency achieved over those paths.

Our system archives both user-driven and NDT-based reverse
traceroutes to M-Lab’s Google Cloud storage [13].

B MAPPING IP PATHS TO COARSER

GRANULARITIES

B.1 Alias resolution

Alias resolution, the process of grouping IP addresses into routers,
is an open problem. It is used by several sections in this paper: the
traceroute atlas (Q1, Q2), the ingress technique (Q3), the comparison
with revtr 1.0 (§5.2), and the use cases (§6). In all of these sections,
we use as a basis the CAIDA ITDK alias dataset [6] that is only
based onMidar [55] to minimize the number of false positives and
the SNMPv3 technique consisting of extracting router identifiers
from responses to unsolicited SNMPv3 requests [17]. In addition,
for certain sections, we use ad hoc heuristics to perform aliasing
tailored by the use case and the data available in that section.

In the traceroute atlas: Our new technique for increasing the set
of intersections of the atlas (Q2) faces the non trivial problem of
matching record route hops with traceroute hops. We use two tech-
niques to find correspondence between a RR hop and a traceroute
hop. First, we run Midar [55] on the set of RR hop and traceroute
hops. A significant portion of the IP addresses (30%) revealed in
the RR measurements do not appear in ITDK, so running our own
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Midar improves the alias coverage. Second, we look for point-to-
point links, which we identify as two IP addresses being in the same
/30 or /31 prefix, as this is a common subnetting practice followed
by network operators [43]. With the assumption of traceroute hops
revealing ingress IP addresses (a classic but non-standard behavior
[73]) and RR hops revealing egress interfaces [4], a point to point
link is composed of a RR hop followed by a traceroute hop. The same
technique is used in evaluation when comparing reverse paths re-
turned by revtr 1.0 and revtr 2.0 to direct traceroute paths, and in
the asymmetry survey (§6.2) to compare forward paths and reverse
paths.

B.2 IP to AS mapping

As for the alias resolution problem, the IP to AS mapping is still an
active area of research, and the better it is, the more accurate our
results are. There are several sections that use IP to AS mapping:
when revtr 2.0 relies on IP to AS mapping to decide whether
it aborts the reverse traceroute measurement if it has to assume
symmetry on an interdomain link (§4.4); throughout the evaluation
section (§5) and the use cases section (§6) to get AS level paths from
reverse paths measured by revtr 2.0.

We adopt the following method to map IP addresses to AS, bor-
rowed from Arnold et al. [20]: for each hop in a reverse path, we
prioritize IP to AS mapping from EuroIX [9] over PeeringDB [11]
over RouteViews [3] over Whois. We cannot directly use bdrmapit
[63] for several reasons: bdrmapit is an offline tool, that takes a
set of traceroutes in input to build a topology graph and infer IP
to AS mapping from it. When measuring a reverse path, one does
not know the hops in advance except the hops in the traceroute
atlas. Even if we knew the hops in advance, bdrmapit expects
traceroutes, and our measurements include hops measured with RR
that may violate the properties that bdrmapit expects. Specifically,
RR paths can not be easily transformed into traceroute paths [70]
precisely because of the presence of routers stamping record route
packets with private IP addresses or not stamping at all (§5.2.2).

The only case where bdrmapit could change revtr 2.0’s results
is when revtr 2.0 issues a forward traceroute to the current hop
and assumes symmetry between the penultimate hop of the tracer-
oute and the current hop (Q5): if the penultimate hop intersects a
traceroute of the atlas, the penultimate hop is a hop given as input
to bdrmapit, and its IP to AS mapping could change between our
technique and bdrmapit. If its IP to AS mapping changes and the
link between the penultimate hop and the current hop switches
from interdomain to intradomain or conversely, it would change the
decision of revtr 2.0 to abort or continue to measure the reverse
path. Changing from intradomain to interdomain is problematic for
accuracy, as revtr 2.0 considers this symmetry assumption as be-
ing correct whereas it should not, and changing from interdomain
to intradomain is problematic for coverage, as revtr 2.0 should
have considered the symmetry assumption as being correct (§4.4).

Evaluation of using bdrmapit:We run bdrmapit on the tracer-
oute atlas, and for each symmetry assumption in the reverse path,
we check if the link on which we assumed symmetry changes from
intradomain to interdomain or vice versa.

Although bdrmapit changed the IP to AS mapping of 3.5K of
55K (6.8%) IP addresses of the traceroute atlas, we find that of

the 102.6M symmetry assumptions, only 70K (0.07%) assumptions
would change from intradomain to interdomain and 1.5M (1.5%)
would change from interdomain to intradomain. The 70K intrado-
main assumptions becoming interdomain would only decrease the
number of trustworthy paths (31M without interdomain symmetry
assumption) by 8K (0.03%), and the 1.5M interdomain assumptions
becoming intradomain would improve the number of trustworthy
paths by 312K (0.1%). These results show the very limited benefit
of bdrmapit over our technique for improving revtr 2.0 accuracy
and coverage, even when considering all bdrmapit inferences are
correct. This is expected, as the only case where bdrmapit could
change the type of a link affecting revtr 2.0 accuracy and cov-
erage is when revtr 2.0 assumed symmetry on a link where the
near side (the closer to the source) of the link is an intersection
hop of the atlas, which is only a small fraction of the symmetry
assumptions (7.3%). We note that incorrect bdrmapit inferences
could negatively impact revtr 2.0’s accuracy as reverse traceroutes
with interdomain assumptions of symmetry (incorrectly inferred to
be intradomain by bdrmapit) would be considered safe. Similarly,
incorrect bdrmapit inferences could also negatively impact revtr
2.0’s coverage as reverse traceroutes with intradomain assumptions
of symmetry (incorrectly inferred to be interdomain by bdrmapit)
would be discarded.

C HANDLING NON-STAMPING

DESTINATIONS

Sometimes, the destination is configured to not stamp record route
packets or to stamp them with a different IP alias that is not in
the BGP prefix, so that our approach described in Section 4.3 fails
to find any ingress. We developed two heuristics to identify such
destinations and adapt our ingress identification for them.

Double stamp: The same IP address can be stamped in two adja-
cent record route entries, without the destination IP address ap-
pearing in the path, in two cases: (1) the IP address is an alias of
the destination; or (2) the destination does not stamp record route
packets, and the IP that we observe is the penultimate hop before
the destination and is on both forward and reverse paths. To handle
both cases, we consider the double stamped IP address to be part
of the destination prefix for the purposes of ingress identification.

Loop: If there is a loop in a record route measurement (a pattern
𝑎 − 𝑆 − 𝑎 where 𝑎 is an IP address and 𝑆 is a loop-free subpath), it
most likely indicates that the packet reached the destination, but
the destination router did not record an address (or recorded an
alias other than the specified destination), and 𝑎 appears on both
the forward and reverse path. In this case, we can not pinpoint
where in 𝑆 the destination was, and so we consider all IP addresses
in 𝑆 as candidate ingresses if they also appear on the RR probe from
the same vantage point to the second destination in the prefix.

D COMPLEMENTARY DETAILS ON THE

EVALUATION

This section gives more details on how we obtain the main results
described in Section 5 about IP timestamp and maintaining the
traceroute atlas.
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D.1 Utility of IP Timestamp

This section justifies in detail why revtr 2.0 does not use TS for
large scale surveys. There are two reasons why the timestamp
technique can fail: (1) either the system does not have the right
adjacencies or (2) hops do not respond to TS. To establish if we
are in case (1) or (2), we run revtr 2.0 without TS (second-to-last
line of Table 4), identify the first hop ℎ of each reverse traceroute
before the first hop assumed symmetric, and give ℎ’s true next hop
from the ground truth traceroute as an adjacency. To find the right
adjacency, we use the same aliasing technique as the one described
in §5.2.2. If we are in case (1), TS probes will be able to find the
adjacency, increasing revtr 2.0 coverage.

Of the 1,771 (17.7%) reverse traceroutes where we assumed sym-
metry on an interdomain link, timestamps succeeded 221 (2.2%)
times in finding the next hop, and in 85 (0.9%) of them revtr 2.0
did not assume symmetry on an interdomain link once allowed
to use timestamps. For these 85 reverse traceroutes, we look at
how it affects accuracy, by comparing the hops discovered with the
version without TS. We found that for 37 reverse traceroutes, the
hop after the TS hop was not present in the reverse path without
TS, and that for 17 of them, the AS of the hop after the TS hop was
not in the AS path of the reverse path without TS, whereas it was
present in the ground truth traceroute, showing that the reverse
path without TS was certainly wrong. This study shows the tradeoff
between issuing many more TS probes in the network versus the
added value in coverage/accuracy, in the optimal case where the
system is fed with the exactly right adjacencies. As we expect TS
to perform even worse with incomplete/inaccurate adjacencies, we
decide to not run them in revtr 2.0 and instead reduce the probing
overhead.

D.2 Building a traceroute atlas

D.2.1 Picking traceroutes. We perform a study that justifies our
traceroute atlas design choice (§4.1), i.e., randomly selecting 1000
traceroutes per source achieves nearly optimal performance. To
this end, we collect traceroutes to 10 of our M-Lab sources from
all the RIPE Atlas probes available at the time of measurements (>
10,000) on 04/01/2021. The experiment consists of using a portion
of the traceroutes to simulate the atlas, while using others to simu-
late reverse traceroutes. To evaluate how selecting traceroutes at
random performs, we assume that we have an oracle that knows all
traceroute paths. We set as the optimal set of traceroutes the greedy
selection of traceroutes from a weighted maximum coverage of IP
addresses seen in the traceroutes, where the weight of an IP address
is the sum of the distance to the source on each traceroute where it
appears. The optimal selection gives us an upper bound to evaluate
the performance of a random selection.

Figure 9a shows the results of random versus optimal on the
following experiment: For each M-Lab node, we randomly split
the 10,000 traceroutes in two subsets, 5,000 traceroutes that can
be selected for the atlas, and 5,000 traceroutes corresponding to
reverse traceroutes. The 𝑥 axis represents the number of traceroutes
that we allow for the atlas, and the 𝑦 axis corresponds to the mean
fraction of hops from the intersected traceroute per reverse tracer-
oute. The optimal lines correspond to the selection described above,
with a difference in the weights used to select the traceroutes: the

Optimal line uses the weights of the atlas, while the Optimal revtr

line uses the weights of the reverse traceroutes. There are two main
lessons from this graph: first, only a small fraction of traceroutes is
required to intersect most of the hops: On the Optimal line, 20% of
the traceroutes (1,000 per source) gives a mean of 56% of the hops
intersected per reverse traceroute, while 100% of the traceroutes
(5,000 per source) increases the mean to just 60%. Second, random
selection achieves near optimal performance: for 1,000 traceroutes
per source, the mean is 50% compared to 56% for optimal. Figure 9b
shows how many iterations the random atlas needs to converge
towards the optimal one. The experiment consists of initializing
the atlas with 1,000 random traceroutes per source (among the
5,000 traceroutes available for the atlas). Then, an iteration consists
of simulating 1,000 random reverse traceroutes (among the 5,000
traceroutes available for the reverse traceroutes). Then, between
each iteration, we only keep in the atlas the minimal set of tracer-
outes to cover the intersections used by those reverse traceroutes,
and replacing the others with new ones to reach 1,000 total tracer-
outes per source. We find that five iterations suffice so that the
mean fraction of hops intersected for the random atlas converge
towards the value of the optimal atlas. In other words, as we refresh
the atlas every day, five days are enough to obtain an optimal atlas.

Fig. 9c shows a different view of the data, to see if the mean
fraction of hops intersected with 1,000 traceroutes per source holds
when the number of reverse traceroutes increases. To evaluate that,
we vary the number of reverse traceroutes and observe how the
mean fraction of intersected hops per reverse traceroute evolves.
Each line shows a fixed size of the traceroute atlas. We observe that
the mean decreases very slowly, with a < 1% decrease between 1,000
and 9,000 reverse traceroutes, so we conjecture that this trend will
hold true for a larger number of reverse traceroutes (i.e., millions).
We also ran the same study using 10 RIPE Atlas probes as sources
and found similar results, showing that the properties are notM-Lab
specific.

D.2.2 When to refresh measurements? We evaluate our strategy to
refresh measurements every day. We use revtr 2.0 for 24 hours to
measure all paths between 146 sources and destinations taken from
the ISI hitlist [33] with a fresh atlas. To identify if traceroutes are
stale and their impact on accuracy, we enqueue a newmeasurement
of any atlas traceroute intersected by a reverse traceroute. Every
15 minutes, we run queued traceroutes in a batch1. Our analysis
compares the aging traceroutes in the atlas (intersected by the
reverse traceroutes) with the fresh traceroute measurements. As a
result, the number of missed changes is an approximation of the
real number, as changes could have happened between the time the
reverse traceroute intersected and the time RIPE atlas performed
the measurement.

Figure 9d shows stacked bars of the cumulative number of reverse
traceroutes that intersected a stale traceroute. We say a traceroute is
stale if either the intersection does not exist in the fresh traceroute
or the AS path after the intersection changed. The first case is
conservative as the change might occur before the intersection
and the subpath between the intersection and the source still be

1We choose this approach rather than directly running the traceroute because we are
limited by how the number of parallel measurements is counted and limited on the
RIPE Atlas API.
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Figure 9: Mean fraction of hops saved depending on the number of traceroutes in the atlas, for Optimal and Random selection

(a). Mean fraction of hops saved depending on the number of traceroute atlas replacement policy iterations (b). Mean fraction

of hops saved depending on the number of reverse traceroutes to intersect (c). Only 0.7% of reverse traceroutes intersect a stale

traceroute (i.e., does not intersect anymore or still intersects but AS path change after intersection) over a day (d).

valid. After 24 hours, only 0.7% of reverse traceroutes intersected a

stale traceroute. To further reduce this number, two options can be
combined: reduce the size of the atlas and refresh it more frequently,
or use more accurate techniques that capture staleness [38] and
refresh the traceroutes as they become stale.

E VIOLATION OF DESTINATION BASED

ROUTING

BA C S

1. First RR ping from S to A reveals [A, B, C] on the reverse path
2. Second RR ping from S to C reveals [C, D, S] on the reverse path
3. The measured reverse path is [A, B, C, D, S]

D

E

C is a load balancer per packet for packets 
with options

Figure 10: Reverse Traceroute reveals one accurate reverse

path in presence of load balancing.

During May 2022, we partly replicated a 2012 study quantify-
ing the violations of destination based routing [34] to show that
the violations affecting revtr 2.0 accuracy are rare. To check for
violations, we perform spoofed record route pings to the 57M des-
tination of our survey (§6.2), spoofed as each of our 146 M-Lab
sources. For each ping that uncovers at least two reverse hops on
the reverse path between a destination D and a source S, for each
pair of adjacent reverse hops (R, R’), we check whether a spoofed
RR ping to R spoofed as S also goes through R’. If it does not, we
say that R violates destination based routing, as it does not always
use the same route to destination S.

We are looking for violations that can affect revtr 2.0 accuracy,
and so we want to exclude cases attributable to load balancing, in
which case revtr 2.0 returns a single valid path among the load
balanced paths (Fig. 10). Whereas load balancers can induce false
links in forward traceroutes because each hop is measured by a
different packet which may be load balanced differently [21], a link
measured by record route for Reverse Traceroute is traversed by

2016 2020
All probed 510,305 829,749
Ping responsive 394,644 (77%) 604,454 (73%)
RR responsive 296,734 (58%) 472, 043 (57%)
RR reachable in 8 or fewer hops 182,926 (36%) 298,078 (36%)

Table 6: A larger fraction of destinations that respond to

pings (without IP options) also respond to pings with the

record route option in 2020 (78%) in comparison to 2016

(75%, from [39])

a single packet that records the hops on both sides of the link. To
minimize false links caused by the traceroute atlas, revtr 2.0 uses
the Paris traceroute technique [21] to measure a single consistent
path in the face of per flow load balancing. Load balancers balance
packets with options randomly (as opposed to per flow), and so we
identify violations caused by load balancing by sending multiple
(spoofed) packets to R [34]. If the measurements return multiple
next hops, we classify R as a load balancer and do not consider
it as a problematic source of violations of destination-based load
balancing.

Of the 4,974,090 tuples (R, R’, S), 328,726 (6.6%) violate destination
based routing and cannot be attributed to load balancing, poten-
tially affecting revtr 2.0 accuracy at router level. Of these 328,726
violations, 64,471 (1.3%) cause an AS path deviation, affecting revtr
2.0 accuracy at AS level. If one wants to further improve revtr 2.0
accuracy, we provide the possibility to perform these redundant
measurements as part of reverse traceroute measurements to iden-
tify these violating routers, at the cost of extra measurements. The
measurements could be flagged as suspicious, the different routes
uncovered by the redundant measurements could all be returned,
and/or the system could be configured to not perform RR measure-
ments to these hops, either trying their predecessors or aborting
the reverse traceroute.

F RECORD ROUTE RESPONSIVENESS AND

REACHABILITY

Since Reverse Traceroute relies on the record route IP option to
build accurate reverse paths, we assess the record route coverage
of the set of vantage points revtr 2.0 uses. We are interested in
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Figure 11: RR hops from the closest M-Lab vantage point to

RR responsive destinations, in 2016 versus 2020. RR respon-

sive destinations are closer to M-Lab vantage points in 2020,

in comparison to 2016.

assessing three key metrics that affect how well revtr 2.0 can
function: (1) whether destinations respond to probes with the record
route IP option enabled, (2) whether destinations are within 8 record
route hops (so we can uncover hops along the reverse path, as
described in Section 2), and (3) how close the destinations are to
their closest VP (so we can maximize the number of hops uncovered
on the reverse path). In November 2020, we conducted a survey
similar to one we conducted in September 2016 [39]. We selected
one responsive destination per BGP prefix in ISI’s hitlist [33] and
sent one record route option-enabled ping, as well as three regular
pings with no IP option enabled from each of our M-Lab vantage
points to the selected hosts.

Table 6 summarizes key statistics from both September 2016 [39]
and November 2020 measurement rounds. A host is considered:

• Ping responsive if it responds to a ping (with no IP option
enabled).

• RR responsive if it responds to a record route enabled ping.
• RR reachable if we observe its IP address anywhere in the
nine slot record route array.

Between 2016 and 2020, we do not see any significant changes in
terms of overall RR responsiveness or RR reachability, and in both
years 62-63% of RR-responsive destinations are within the 8 hops re-
quired by Reverse Traceroute. Spoofing allows Reverse Traceroute
to use the closest vantage point to a destination [52], regardless of
the source, and so revtr 2.0 can use record route to measure reverse
hops from 63% of RR-responsive destinations for all sources. With-
out this ability to spoof to decouple the forward and reverse paths
and use the closest vantage point, record route could only be used
if the particular source was within 8 hops of the destination, which
occurs for only 32% of ⟨source, RR-responsive destination⟩
pairs. So spoofing nearly doubles the coverage revtr 2.0 obtains
with record route from 32% to 63%.

RR responsive destinations tend to be closer (in terms of record
route hops) to M-Lab vantage points in 2020. Figure 11 shows the
distribution of the distance between RR-responsive destinations
and their closest VPs, at different times (2016 and 2020) and with
different VP sets. The lines Nov. 2020, All VPs and Sept. 2016,
All VPs both use all available M-Lab vantage points at the time of

the experiment. We observe, for example, that 39% of responsive
destinations are within 4 hops in 2020, compared to 16% in 2016.

We are also interested in measuring differences without the
effects of the change in available VPs over the years. The line
Nov. 2020 with 2016 VPs shows results restricted to the 44 2020
sites that were also among the 86 M-Lab sites in 2016. For both of
the November 2020 lines, we only consider destinations that were
RR-responsive to at least one of these 44 sites in order to have a
consistent denominator (450,059 hosts). Even using only roughly
half the sites that were available in 2016, destinations tend to be
closer to the closest M-Lab site in 2020 (e.g., RR reachability within
4 hops jumps from 16% with 86 sites in 2016 to 26% in 2020 using
44 of the sites).

These are positive results for revtr 2.0—being within 8 hops
allows for hop discovery on the reverse path (§2), which contributes
to more accurate reverse traceroutes by avoiding assumptions of
symmetry, and being closer than 8 hops enables measuring more
hops per packet, reducing probing overhead and increasing system
throughput. While the availability of new vantage points placed “in
diverse location[s] around the world” and “in well connected data
centers where ISPs interconnect” [10] is a factor, we suspect that
increased peering could be an additional explanation as to why we
observe shorter paths from the same vantage points, 4 years later.

G ADDITIONAL RESULTS ON PATH

SYMMETRY

In this appendix we discuss complementary results to our analysis
of path asymmetry in the Internet (§6.2) using the same dataset.

G.1 Impact of symmetry assumptions

Our path symmetry study considers 30M complete bidirectional
measurements whose revtr 2.0 did not make any interdomain
symmetry assumptions. Our results have shown that intradomain
symmetry assumptions do not have a significant impact on accuracy
(§4.4). We now show that intradomain symmetry assumptions also
do not significantly impact our path symmetry study.

Fig. 12 quantifies route symmetry considering the subset of 23M
bidirectional measurements whose revtr 2.0 does not make any
symmetry assumptions. Results are qualitatively similar to those in
Figure 8, with 3% more symmetric paths at the AS granularity and
even smaller differences at the router granularity.

G.2 Asymmetry and AS-paths

We find that asymmetric routes are usually longer than symmetric
ones. Fig. 13 shows the CDF of AS-path lengths for all measurements
as well as for symmetric and asymmetric measurements traversing a
Tier-1 network. Similarly, symmetric paths through Tier-1 networks
are often shorter than asymmetric paths, with most paths traversing
5+ ASes being (rare and) asymmetric.

Fig. 14 shows where asymmetries are detected in forward tracer-
outes. We show, for different AS-path lengths, the probability that
each hop on the forward traceroute is also on the corresponding
reverse traceroute. We find that hops towards the middle of the path
have a higher probability of being asymmetric, with a bias towards
hops close to the M-Lab node (left side of Fig. 14) being missing
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from the reverse traceroute more often than hops close to the desti-
nation. Fig. 14 indirectly shows that instances of asymmetry often
involve multiple hops, particularly on longer routes.

G.3 Comparison with previous work

Previous works have studied route asymmetry on the Internet
[30, 47, 52]. With the exception of the original Reverse Traceroute
paper [52], all previous works relied on standard traceroute and
were thus limited to bidirectional measurements between a few
hundred controlled vantage points. revtr 2.0 allows us to cover a
significantly wider range of destinations and cover a more diverse
set of Internet paths.

More recently, de Vries et al. [30] characterized route asymmetry
using 119,550 bidirectional route measurements between 4000 RIPE
Atlas vantage points. A key difference in our study to theirs is
in the very definition of asymmetry. In particular, de Vries et al.
quantify asymmetry as the edit distance between the forward and
reverse traceroutes, while we quantify symmetry as the fraction of
hops on the forward traceroute also on the reverse traceroute. Our
definition of asymmetry may underestimate the amount of actual
asymmetry in Internet paths, which may explain why de Vries et
al. found 87% of paths are asymmetric while we find only 47% of
paths are asymmetric at the AS granularity.

Although Fig. 14 is inspired by and similar to Figure 7 in [30], the
two figures differ not only in the definition of symmetry (above),
but also in that we do not require that the forward and reverse paths
have the same length. Compared to [30], our results show a concen-
tration of asymmetry close to the source, which is expected since
our definition of asymmetry only considers hops on the forward
traceroute.

Finally, de Vries et al. found that tier-1s and large IXPs often show
up on asymmetric paths (Table 2 in [30]). We find similar results in
Figure 8(b), and name the top 10 ASes that appear in asymmetric
routes in Table 7. Our results, however, do not identify IXPs as
frequent occurrences in asymmetry routes as we map IXP addresses
to the corresponding member AS using PeeringDB (Appx. B.2).
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