

Identifying traffic differentiation on cellular data networks

STINY BRINK UNIVERSITY

Arash Molavi Kakhki[§], Abbas Razaghpanah[†], Rajesh Golani[†], David Choffnes[§], Phillipa Gill[†], Alan Mislove[§] Northeastern University[§], Stony Brook University[†]

Introduction

Define traffic differentiation as any attempt to change the performance of network traffic traversing an ISP's boundaries.

ISPs may implement differentiation policies for a number of reasons, including:

- load balancing,
- bandwidth management
- business reasons.

Specifically, we focus on detecting whether certain network traffic types of receive better (or worse) performance.

Related work

Previous work explored this problem in limited environments.

	Switzerland	Glasnost	Us
Applications Tested	BitTorrent Only	P2P and Video	Any Application
Desktop App	Yes	Browser Plugin	Yes
Customized Tests	No	No	Yes
Smartphone App	No	No	Yes

Objectives

- 1. **Identify and expose** differentiation
- 2. **Measure** how differentiation affects performance Delaying, throughput throttling, jitter, packet dropping
- 3. Classify differentiation for popular applications VoIP, Media Streaming, File Sharing, Cloud Storage

Assumptions

We assume that ISPs will differentiate traffic based on properties such as hostname, IP addresses, ports, total number of connections, payload signatures, total bandwidth and time of day.

Methodology and challenges

- How to capture and replay the salient features of application traffic such that it will be subject to differentiation from middleboxes?
- How to establish **ground truth**?
- How to **quantify** differentiation?
- Implementation challenges: e.g. users behind NAT, ...

Replay Record sandvine 🖚 meddle meddle

Feasibility

Replay produces very similar results to the original traffic

Can detect differentiation in a controlled environment (%3 loss and 10ms delay).

Initial results

Currently tests are performed by researchers using PCs tethered to mobile devices.

Spotify (left) and Netflix (left) Verizon in Boston. No differentiation detected.

Future work

- Create a mobile app to enable wider adoption of the test (in progress). Run on networks we know there is differentiation to validate our techniques.
- Allow users to **record and** replay custom traces (longer term).
- Create a **Differentiation Watch** website and blog to report the results for different networks and blog about newly detected differentiation.
- **Source-spoofing** to detect destination IP-based differentiation.

References

- [1] http://www.meddle.mobi
- [2] https://www.eff.org/pages/switzerland-networktesting-tool
- [3] M. Dischinger, M. Marcon, S. Guha, K.P. Gummadi, R. Mahajan, S. Saroiu, Glasnost: enabling end users to detect traffic differentiation, in: USENIX NSDI'10, 2010