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ABSTRACT
Interdomain path changes occur frequently. Because routing proto-
cols expose insufficient information to reason about all changes, the
general problem of identifying the root cause remains unsolved. In
this work, we design and evaluate PoiRoot, a real-time system that
allows a provider to accurately isolate the root cause (the network
responsible) of path changes affecting its prefixes. First, we de-
velop a new model describing path changes and use it to provably
identify the set of all potentially responsible networks. Next, we de-
velop a recursive algorithm that accurately isolates the root cause of
any path change. We observe that the algorithm requires monitor-
ing paths that are generally not visible using standard measurement
tools. To address this limitation, we combine existing measurement
tools in new ways to acquire path information required for isolat-
ing the root cause of a path change. We evaluate PoiRoot on path
changes obtained through controlled Internet experiments, simula-
tions, and ‘in the wild’ measurements. We demonstrate that Poi-
Root is highly accurate, works well even with partial information,
and generally narrows down the root cause to a single network or
two neighboring ones. On controlled experiments PoiRoot is 100%
accurate, as opposed to prior work which is accurate only 61.7% of
the time.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Operations: Net-
work Monitoring

Keywords
Path Changes, Root Cause Analysis, Measurement, Monitoring,
BGP

1. INTRODUCTION
Internet paths change frequently, as links fail or become avail-

able and as traffic engineering and policies evolve. Although many
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of these changes are benign, some can seriously disrupt the per-
formance or availability of distant networks and services. Disrup-
tive changes can cause unwelcome changes in flow volumes over
ingress links, longer round-trip times, less available bandwidth,
and loss of connectivity [17, 41]. For example, Google recently
found that interdomain routing changes caused more than 40% of
the cases in which clients experienced a latency increase of at least
100ms [44].

These changes in performance and availability can be costly for
service providers. Amazon found that every additional 100ms of
delay in loading a web page costs them 1% of their sales [22]. Sim-
ilarly, a Yahoo! study found that, when a page took an additional
400ms to load, the latency caused 5-9% of users to browse away,
rather than letting the page load to completion [36]. Outages at
large data centers cost an average of $5,000 per minute [33]. Previ-
ous work demonstrates that these providers can work with remote
networks to resolve problems [19], but doing so requires know-
ing which network to contact. Taken together, these facts suggest
that content and service providers would like to quickly understand
what caused a path change that impacts their clients’ performance.

There are other reasons to understand the root cause of a path
change. Research has established that Internet routing policies can
create unstable configurations [12, 13] and that some paths experi-
ence frequent updates [21], making it important to understand the
underlying causes of these updates. Networks may want to avoid
providers or paths based on a historical understanding of which
ISPs cause many changes [2]. Routing policies have a significant
impact on performance [35], and understanding the causes of path
changes and selections provides some visibility into the policies in
use [23]. An understanding of how path changes ripple through the
Internet could prove helpful in developing new protocols for rout-
ing, for distributing routing updates [14], or for moving toward a
more stable Internet.

The goal of this work is to accurately isolate the root cause of a
path change within minutes of it happening. For our purposes, the
root cause is the network or router whose link availability or policy
adjustment initially triggered the sequence of route updates leading
to the path change in question. Operators can use this information
to debug and address performance problems as they occur, and it
could eventually drive a system that automatically reroutes traffic
to improve performance (similar to LIFEGUARD [18]).

Previous work provided initial inroads towards our goal [2, 9],
but opaque policies and poor network visibility limit our ability to
understand the root cause of path changes and how they propagate



through the Internet. In particular, we identify the following open
challenges that these limitations present.

First, interdomain routing policies can interact in complex ways,
so the network responsible for a change may appear neither on the
old path nor the new path [9]. Existing algorithms assume that
the change is on the old or new path [2, 9], and they cannot prop-
erly account for these induced path changes. Second, because path
changes can have cascading effects, proper root cause identifica-
tion can require monitoring a potentially large number of paths,
many of which are invisible to traditional measurement vantage
points such as public BGP feeds and traceroute servers. Third, lit-
tle to no ground truth information is available to validate assump-
tions about Internet routing made by root cause identification al-
gorithms. Our results from controlled experiments on real Internet
paths demonstrate that these challenges and others cause an exist-
ing approach [9] to correctly identify the root cause in only 62% of
path changes.

This paper describes how we address these issues to build a sys-
tem, which we call PoiRoot [4], that allows a provider to quickly
and accurately isolate the root cause of path changes affecting their
clients. We derive new constraints on how interdomain path changes
propagate and use them to develop an algorithm to accurately iso-
late the root cause. We then deploy an extensive measurement sys-
tem and demonstrate that our approach is both precise (i.e., pro-
duces a small set of suspected root causes) and accurate (i.e., the
suspect set always includes the root cause of a path change) for real
Internet paths. Our main contributions are as follows.

First, we identify a provable upper bound for the set of paths
that must be monitored to identify the root cause of an interdomain
path change. Because this set might be prohibitively large for an
arbitrary change, we use a simple, yet effective, routing model to
refine the set to improve scalability. Our bound reduces the average
number of ASes we need to monitor to perform root cause analysis
by up to 65%.

Second, we combine existing measurement tools in new ways to
acquire path information required to isolate the root cause of a path
change. In addition to public BGP feeds, we use BGP prepending
on prefixes we control to reveal alternative, less preferred, paths
toward our prefixes from distant ASes. We then use data-plane ac-
tive measurements (traceroutes) toward our prefixes to identify the
paths before and after a given path change. In our experiments, we
are able to collect the necessary path information within minutes of
a path change, allowing our approach to quickly perform root cause
analysis.

Third, we develop an algorithm – based on our model and us-
ing our measurements – that allows us to isolate the root cause of
a path change, even with partial routing information. We use con-
trolled experiments on real Internet paths to demonstrate the effec-
tiveness of our approach. In particular, we use BGP announcements
to cause path changes for prefixes we control, then validate our al-
gorithm using this ground-truth information. We show that PoiRoot
accurately identifies the root cause of a path change in every case
in our experiments, including induced path changes that previous
approaches do not address. Finally, we show that path changes in
the wild cause significant performance problems, and that PoiRoot
is able to identify small suspect sets containing the network respon-
sible for them.

The rest of the paper is organized as follows. In the following
section, we provide background related to the problem of root cause
analysis and motivate PoiRoot by describing limitations of previous
work. In §3, we develop a general algorithm for identifying the root
cause of an arbitrary path change, then use a simple model of BGP
path changes to derive the set of paths that must be monitored to
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Figure 1: Example of an induced path change at v after the
link d–z fails. Numbers on edges show the local preference
(LocalPref) of a peer, higher is more preferred.

identify the root cause. In §4, we describe the design of a measure-
ment system to gather this path information. §5 uses experiments
on real Internet paths, simulations, and “in the wild” path changes
to demonstrate the effectiveness of our approach. We discuss re-
lated work in §6 and conclude in §7.

2. BACKGROUND AND CHALLENGES
In this section, we discuss closely related work and how it fails to

address several open challenges for root cause analysis, i.e., iden-
tifying the AS that originates a routing change in the Internet.1 We
discuss other related work in §6.

2.1 NOOR Approach
The first general approach for root cause analysis was proposed

by Feldmann et al. [9]. The key idea behind this heuristic is that
the root cause of a path change observed at an AS is likely either
on the old path used before the change or the new path used after
the change. We refer to this approach as NOOR, because it identi-
fies changes on the New Or Old Route. (We use the terms ‘route’
and ‘path’ interchangeably in this paper.) The heuristic then com-
bines simultaneous path change observations from different ASes
and builds a suspect set containing the ASes that appear in all paths
that changed and that never appear in paths that did not change.
Although not evaluated explicitly, to reduce the set of suspect ASes
further, NOOR assumes that the root cause is on the most preferred
path (otherwise AS A would keep using the preferred path and
there would be no change).

The authors use simulation to inform their design, then evaluate
their approach using experiments on real-world data with BGP bea-
cons announcements for ground truth. In this context, Feldmann et
al. were able to isolate the origin of a BGP path change to a single
AS or inter-AS link for 76% of the cases they study. Applying fur-
ther heuristics, they achieve this precision in 96% of cases. While
these results may suggest that we can close the book on root cause
analysis, we list several challenges below that may impact NOOR’s
accuracy and precision.

2.2 Open Challenges
Induced Path Changes. The root cause of a path change observed
at an AS v may lie outside the old and new paths used by v. Feld-
mann et al. [9] recognize this challenge but did not have an ap-
proach to address it. Fig. 1 shows an example network topology
where an induced change happens. The solid arrows show the paths
ASes chose toward s before the link between ASes d and z failed.
The dashed arrows show the path ASes chose to AS s after the fail-
ure. ASes with one outgoing arrow (solid circles) did not change
paths. Note that, before the failure, AS y prefers the longer route
through z (LocalPref 2, higher is more preferred) than the shorter

1We do not identify reasons for a routing change, e.g., whether a
change was caused by a link failure or traffic engineering.



route through e (LocalPref 1). When the failure happens, AS z can-
not find a path to s and withdraws its path. AS y then changes to
the shorter, less preferred route through e. When y announces the
new route to v, AS v changes to the new route [y, e, s] because it is
shorter than the route through x. Note that the root cause, i.e., the
link between ASes d and z, does not lie in either the old or the new
path used by AS v. NOOR cannot identify the root cause of induced
path changes; at best, it would find the AS where the change was
induced, e.g., AS y. Moreover, because NOOR correlates changes
across all observation points, it suffices that one observation point
experiences an induced path change to make identification fail. We
address such cascading path changes in §3.1.

Extensive Path Monitoring. BGP limits the amount of path-
change information one can gather passively [28, 38]. For exam-
ple, an AS that receives updated paths from different downstream
neighbors will forward only its best path upstream. One conse-
quence is that BGP and traceroute measurements from a small num-
ber of vantage points are insufficient to observe an arbitrary path
change. We potentially need BGP measurements from each AS in
the network [37], or techniques such as Reverse Traceroute [16]
that provide path measurements from arbitrary ASes, to have com-
plete information to perform root cause analysis. We determine
the set of required measurements in §3.2 then use a simple routing
model to bound this set in §3.3.

Inferring Route Preferences. When an AS switches from path P
to P ′, it may be unclear which of the two paths it prefers. Feld-
mann et al. proposed a heuristic that considers the shorter path the
preferred path. However, in practice inter-AS business relation-
ships (i.e., policy routing) take precedence over path length in the
route selection process. Incorrect assumptions about routing poli-
cies can prevent root cause analysis from identifying the correct
AS responsible for a path change. We describe our preference in-
ference mechanism in §3.3.

3. GENERAL ROOT CAUSE ANALYSIS
In this section we frame the general problem of locating the root

cause of an arbitrary interdomain path change. For the sake of
exposition, we use an AS as the basic routing element. First we
make a set of simple observations to reason about all possible path
changes at a given AS and their implications for root cause analy-
sis. These lead to a a recursive algorithm for isolating the root cause
(§3.1). Then we provide a proof as to what is the upper bound on
the set of ASes that our recursive algorithm traverses for root cause
analysis (§3.2). We observe that the number of paths to monitor to
obtain this subgraph can be large for arbitrary path changes. To ad-
dress this, we use commonly accepted assumptions about routing
decisions to further restrict the set of monitored paths (§3.3).

3.1 Root Cause Analysis Algorithm
We now consider locating the root cause of a change observed on

the path from an AS v towards an AS s that originates a prefix. In
the following discussion we isolate the root cause at the granularity
of ASes, but our approach makes few assumptions about routing
and can equally apply to other groupings such as quasi-routers [29]
or PoPs as long as information at these finer granularities is avail-
able. For simplicity, we assume that at any time there is only one
routing event causing a path change to a particular prefix, and that
we have complete and accurate path information. We revisit these
assumptions in §4. We also make the reasonable assumptions that
(i) an AS v changes paths either due to modifications in its route
preference or due to a change in one of its neighbor’s paths or ex-

Algorithm 1 Recursive algorithm for general root cause analysis.
Precondition: A path change observed on the path from v to s. Let
O(v) = [v, x, . . . , s] and N(v) = [v, y, . . . , s].
RootCause(v, s):
1 if x = y: // downstream change
2 return RootCause(x, s)
3 if O(x) 6= N(x): // neighbor path change
4 return RootCause(x, s)
5 if O(y) 6= N(y): // neighbor path change
6 return RootCause(y, s)
7 return {v, x, y} // local change

port policies; and that (ii) if v did not change its next hop to s nor
its export policy, it is not responsible for the route change.

Below we enumerate all possible observations of path changes
at an AS v and what inference we can make from each observation
for root cause analysis. Let O(v) and N(v) denote the old and the
new paths AS v used before and after the event, respectively.2

Local change. If AS v changed its next hop toward s, i.e., O(v) =
[x, . . . , s] and N(v) = [y, . . . , s] such that x 6= y, but both next
hops did not change paths, i.e., O(x) = N(x) and O(y) = N(y),
then the root cause is in {v, x, y}. Either v changed its route pref-
erence or either x or y changed their export policy. If there is
no working path before or after a change, either x or y is null.
Note also that if there was no change at v, i.e., O(v) = N(v) =
[x, . . . , s], then downstream ASes {x, . . . , s} are not the root cause
of the event. AS v can still be the root cause if it changed its export
policy (i.e., started or stopped announcing the route upstream).

Neighbor path change. If AS v changed its next hop toward s,
i.e., O(v) = [x, . . . , s] and N(v) = [y, . . . , s], and one of the
neighbors changed paths, i.e., O(x) 6= N(x) or O(y) 6= N(y),
then the change at v was induced by the change in its next hop
neighbor and v is not the root cause.

Downstream change. If the old and new paths at an AS v share the
first hop but downstream hops are different, i.e., O(v) = [x, . . . ,
m, . . . , s] and N(v) = [x, . . . , n, . . . , s], then v is not the root
cause of the event.

The observations above can be combined to build a generic root
cause identification algorithm as shown in Alg. 1. The algorithm
starts from an AS v where a change was observed. If v uses the
same next hop AS toward s before and after the change, v is not the
root cause and we continue our search downstream (downstream
change). If v uses different next hop ASes and one of them changed
paths, then we search downstream from the next hop that changed
paths (neighbor path change). If both next hops of an AS v change
paths, the changes are due to the same (unique) root cause and
Alg. 1 finds the root cause regardless of the next hop chosen in
the recursive call. If v uses different next hop ASes before and af-
ter the change and the next hops did not change paths, then we have
found the root cause (local change).

We can simplify inference from a local change if we assume that
ASes do not change their export policy, i.e., if an AS is (is not)
exporting a particular path to a particular neighbor, it will not stop
(start) exporting to that neighbor unless it changes paths. Under
this assumption, ASes x and y cannot be the root cause in a local
change. Simply put, if O(x) = N(x), x is not the root cause. As a
result, line 7 of Alg. 1 would return only {v} as the root cause.

As an example, Tab. 1 shows the steps taken by Alg. 1 when
applied to the path change in Fig. 1. The algorithm starts at v,
2Even though the text focuses on the sequence of ASes in a path,
comparison of paths includes other relevant data such as BGP com-
munities and multi-exit discriminators when available.



Recursion Target
O(·) N(·) ObservationDepth AS

1 v [x, b, a, s] [y, e, s] neighbor path change
2 y [z, d, c, s] [e, s] neighbor path change
3 z [d, c, s] ∅ local change

Table 1: An example of Alg. 1 applied to the path change shown
in Fig. 1.

observes a neighbor path change since the old and new first hops
are different, and calls itself recursively to search the root cause
downstream from y. At y, the algorithm observes another neighbor
path change and searches the root cause downstream from z. At
z, the algorithm observes a local change and identifies {z, d, ∅} as
the root cause as both neighbors (d and ∅) did not change paths (∅
is z’s neighbor since z has no new path due to the failed link z−d).
Under the assumption that export policies are fixed, we would get
{z} as the root cause instead.

3.2 General Candidate and Monitored Sets
We now consider the set of ASes that Alg. 1 could traverse for

an arbitrary path change observed at v, which yields the full set
of path information that the algorithm could require to identify the
root cause.

We define the general candidate set of an AS v, denoted C(v),
as the set of ASes Alg. 1 may identify as the root cause of a path
change observed at v. For a given path change for prefix p observed
at AS v, C(v) is a set containing v itself and the ASes in the general
candidate sets of its old and new downstream neighbors. Let On(v)
and Nn(v) denote the downstream neighbors AS v chose toward
p before and after the change, respectively. Then C(v) = v ∪
C(On(v)) ∪ C(Nn(v)).

As an example, in Fig. 1, On(v) = x, Nn(v) = y, and the
general candidate set of v contains the ASes in v’s old and new
paths (v, x, b, a, y, e, s) as well as the ASes in y’s old path (z, d, c).
If z had a new path, its ASes would also be in C(v). ASes like
m and n that are not involved in the change are not in v’s general
candidate set. Now we can prove the following result.

THEOREM 1. If there is only one routing event in the network,
the root cause of a path change at an AS v lies in C(v).

Proof The claim is trivially true if the root cause is v. If there
is another AS x in O(v) or N(v) that changed paths, the change
at v was induced by the downstream change at x (neighbor path
change or downstream change). Such an AS x is in C(v). Simi-
larly, if there is another AS y in O(x) or N(x) that changed paths,
the change at x was induced by the change at y. Such an AS y
is in C(x) ⊂ C(v). We can follow this process recursively un-
til we find the AS c ∈ C(v) that is the AS closest to the source
that changed paths (i.e., there is no AS downstream c that changed
paths). Without loss of generality, we need to prove that the root
cause of the change at c is in C(v). An AS not in O(c) ∪ N(c)
cannot be the cause of the change at c because it cannot change
the relative preference between the (unchanged) paths c receives
from its downstream neighbors On(c) and Nn(c). Thus, either c
changed its route preference and is the root cause, or one of its
downstream neighbors changed their export policy and are the root
cause (local change). This completes the proof.

Alg. 1 is guaranteed to identify the root cause of path changes.
However, it requires path information from a potentially large set
of ASes in the network. Identifying the root cause of a change at
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Figure 2: General topology subgraph demonstrating a three-
level induced path change starting at c and propagating up to
v (impossible under the simplified routing model). The ASes
shown can be anywhere in the path.

an AS v requires information about the old path used by an AS x
in the new path chosen by v, i.e., we need to know O(x), where
x ∈ N(v). Because we cannot know the ASes in N(v) until after
the path change, we need to track the old paths from all ASes in all
possible paths v can change into. For example, in Fig. 1, we need to
monitor paths from x, y, and m, as we do not know a priori what
neighbor v will choose after a change. Given the recursive calls
in Alg. 1, the set of ASes we need to track paths from may grow
exponentially with the path length, subject to the upper bound of
the size of the AS graph.

Formally, we define the general monitored set of an AS v, de-
noted M(v), as the set of ASes whose old paths we need to track
to run Alg. 1 on path changes observed at AS v. Let L(v) de-
note the set of neighbor ASes v can use to reach an AS s. The
set M(v) includes the neighbors v can use to reach s and all ASes
in the general monitored sets of each of v’s neighbors. This gives
M(v) = L(v)∪{M(x) | x ∈ L(v)}. While the general candidate
set, C(v), is specific to a given change, M(v) is not and covers all
possible changes. Note that C(v) ⊂ M(v), as C(v) includes the
general candidate set of only the neighbors v chose before and af-
ter the path change. For example, in Fig. 1, C(v) includes C(x) and
C(y), while M(v) includes M(x), M(y), and M(m).

3.3 Bounding Candidate and Monitored Sets
To address the challenge of monitoring a prohibitively large set

of ASes, we provide a bound on the general candidate set C(v). We
then use this bound to reduce the set of ASes we need to monitor
to perform root cause analysis.

Our bound on the candidate set is derived from the simple and
widely used Gao-Rexford routing model [10]; i.e., we assume each
AS has a total ordering over the preferences for all available paths
toward a prefix. For example, an AS typically prefers a path learned
from a customer over another learned from a peer or provider, and
a path learned from a peer over another learned from a provider.

We also assume an AS considers its LocalPref (which can encode
policies such as business relationships and/or traffic engineering)
for each path before AS path length when selecting among paths
announced by multiple neighbors toward the same prefix. This as-
sumption is reasonable as it is used in the BGP route selection pro-
cess. The shorter path is picked only if two or more paths have the
same LocalPref (e.g., both are customer paths).

We further assume that assigning LocalPref values only on neigh-
boring ASes. In other words, path preference at an AS does not
depend on which specific ASes are in the path, except for the next
hop ASes only, a property that holds empirically the vast majority
of the time [11].

Based on this routing model we identify the ASes from the gen-
eral candidate set most likely to have caused a path change. We
overload our notation for the old and new paths used by an AS
v, O(v) and N(v), as follows. N(O(v)) is the set of ASes that
appear on the new paths originating from the ASes in O(v), and



O(N(v)) is the set of ASes that appear on the old paths orig-
inating from ASes in N(v). For example, in Fig. 2, O(v) =
[b, f, . . . , s] and N(O(v)) = O(v)∪N(b)∪N(f)∪· · ·∪N(s) =
{b, f, c, e, . . . , s}.

THEOREM 2. Under the simplified routing model, the root cause
of a path change observed at an AS a is contained in the bounded
candidate set B(v) = N(O(v)) ∪O(N(v)).

Proof We first show that the root cause AS may appear in B(v). It
is obvious that the root cause may lie on either the old or the new
path, i.e., ASes like g and b. ASes in the set N(O(v)), like c, can
be the root cause as well. Using Fig. 2 as an example, suppose a
failed link c–b comes back up and c starts announcing a path to
b. AS b may start routing through c if it prefers paths from c over
paths from f . AS v may then change its route from b to g if the
new path through [b, c, . . . , s] is longer. The case of O(N(v)) is
similar.

Now we show that ASes in the set C(v) − B(v) cannot be the
root cause. These include ASes like d, which lies in O(N(O(v))).
Proceeding by contradiction, assume that the path change shown in
Fig. 2 happens and that the root cause is d, causing c to switch to
a different path through e and causing b to switch to c’s new path.
This implies that b’s criterion for path selection between f and c
is path length. If b had a policy favorable to c (e.g., a higher Lo-
calPref for c) then it would have picked the path through c in the
first place. If b had a policy favorable to f it would not change
paths. Shortest path routing at b implies that [b, c, e, . . . , s] ≤
[b, f, . . . , s] ≤ [b, c, d, . . . , s], where the ‘≤’ operator compares
path lengths. This is because b prefers the path through f before
the routing event and the path through c–e after. Now, if v switches
to the new path through g, then it implies that v is using short-
est path routing to choose between b and g. As v prefers the path
through b–f over the path through g before the routing event and
the path through g over the path through b–c after, we have that
[v, b, f, . . . , s] ≤ [v, g, . . . , s] ≤ [v, b, c, e, . . . , s]. Looking at the
paths from v we have that [b, f, . . . , s] ≤ [b, c, e, . . . , s]. This con-
tradicts the earlier result from b that [b, c, e, . . . , s] ≤ [b, f, . . . , s].
Hence, d or any other AS in O(N(O(v))) cannot be the root cause.
The argument is similar for N(O(N(v))). wrapwrap

Observe that B(v) = N(O(v)) ∪ O(N(v)) is contained in v’s
general candidate set C(v). Hence, if the root cause lies in B(v), it
also lies in C(v), as per Theorem 1. Note also that if our assump-
tions and routing model are wrong, the root cause of a path change
at v can lie outside B(v). However, we can still detect violations
of the assumptions checking that the root cause is outside B(v).

Even if we limit our search for the root cause in the bounded
candidate set B(v) = N(O(v)) ∪ O(N(v)), the O(N(v)) term
implies we need to track the old paths from all ASes that may ap-
pear in any new path v can choose. This makes the set of ASes
whose old paths we need to track the same as the general moni-
tored set M(v).

To bound the monitored set, we only track the old paths from
ASes in the most preferred paths v can change to. AS v may change
away from O(v) if a more preferred path becomes available. To
cover this case, we monitor old paths from all ASes in paths that
are more preferred than O(v). Conversely, AS v may change away
from O(v) to a less preferred path if O(v) becomes unavailable.
Monitoring old paths from all ASes in paths that are less preferred
than O(v) can be costly and wasteful because v should use pre-
ferred paths most of the time and the less preferred a path, the less
likely it will be used. Instead, we monitor old paths from all ASes
in the next less preferred paths from each AS x in O(v). This ap-
proach only misses information when an AS x ∈ O(v) changes to

a path that is not its next less preferred path (which may happen,
e.g., when the network lacks redundancy and an event impacts both
of an AS’s current and next preferred path).

We define the bounded monitored set, denoted T (v), as the set
of ASes in all paths that v prefers over O(v) plus the ASes from
the next less preferred path from each AS in O(v). If path prefer-
ence information is unavailable for an AS v, we take a conservative
approach and add the most preferred path from each of v’s down-
stream neighbors to T (v). We have that T (v) ⊂ M(v). We also
note that while B(v) is specific to a given change, T (v) is not and
covers most possible changes.

Tracking paths from ASes in the most preferred paths reduces
the monitored set when identifying the root cause in the bounded
candidate set B(v) because we need to know only O(N(v)). The
heuristic would not be as effective at reducing the monitored set if
we were identifying the root cause using the general candidate set
C(v). The reason is that we would need to monitor ASes in the
most preferred paths for any AS that can show up in new paths,
recursively. For example, we would need to track ASes that can
show up in the most preferred paths of all ASes in N(O(v)) to
know O(N(O(v))).

4. DESIGN AND IMPLEMENTATION
The previous sections laid down theoretical foundations for root

cause analysis when complete and accurate routing information is
available. We now describe a practical system to identify the root
cause of a path change in the Internet with possibly incomplete and
inaccurate data. We now state the goals of the system and how we
achieve them.

4.1 Goals
Our work is motivated by the fact that Internet path changes can

have a significant impact on performance and availability, affecting
service providers, operators, and customers. When such changes
occur, we would like to to be able to quickly and accurately identify
the network responsible for the change. This allows operators to
more quickly debug problems and take corrective action (e.g., by
contacting the responsible network). To enable such a system, we
identify the following system goals.

• Accuracy: The output candidate should include the AS that
caused the change.

• Precision: The system should identify a small set of ASes as
candidates for being the root cause of a path change, ideally
a single AS or single AS link.

• Robustness: The system should be able to deal reasonably
well with uncertainty or absence of information.

• Scalability: The system needs to be selective in its choice
of ASes to monitor and should introduce as little measure-
ment overhead as possible. It should conduct measurements
and quickly identify root causes of path changes (e.g., within
minutes), enabling operators to quickly react when an unex-
pected change happens.

4.2 System Overview
PoiRoot employs a number of measurement components (§4.3

and §4.4) to identify the root cause of path changes observed on
paths from a set of target ASes V to a set of monitored prefixes P .
As shown in Fig. 3, PoiRoot operates in two modes for each mon-
itored prefix. In the absence of path changes, the system stays in
monitoring mode. The first task of monitoring mode is to estimate



Figure 3: PoiRoot operation modes.

the set of ASes we need to monitor to perform root cause analysis
for all target ASes, i.e.,

⋃
T (v) for all v ∈ V . The second task is

to measure paths from the monitored ASes toward the monitored
prefixes in P .

PoiRoot enters identification mode whenever the path from a tar-
get AS v to a monitored prefix changes. Identification uses infor-
mation about the old paths used before the change, collected while
in monitoring mode. The first step is to collect information about
new paths used by ASes in v’s old path, i.e., measure N(O(v)).
PoiRoot then runs the identification algorithm to identify the root
cause of the change. Finally, PoiRoot returns to monitoring mode
after identification is complete.

4.3 Path Measurement
PoiRoot maintains an atlas of paths from each AS v ∈ V to

each monitored prefix. To this end, we combine publicly-available
BGP feeds and active traceroute measurements. To satisfy the as-
sumption that there is only one routing event in the network, we
need path measurements from each AS at high enough frequency
such that the path is available before and after each routing event.
We also need to collect all necessary information and identify the
root cause before the next routing event happens. We describe both
control- and data-plane monitoring measurements we use below.

Passive BGP Monitoring. PoiRoot uses BGP paths made pub-
lic by over 100 RouteViews peers [28]. We download data from
RouteViews every 15 minutes. For each monitored prefix, we store
historical and current BGP path information. We group updates
into convergence periods if they are less than 4 minutes apart to
identify stable routes. Previous work has shown that varying the
grouping threshold between 2 and 8 minutes has negligible impact
on the resulting convergence periods and stable paths [18, 41].

Traceroute Monitoring. We supplement our view of paths toward
a monitored prefix using traceroute measurements that we translate
to AS paths using IP-to-AS translation. Specifically, every 10 min-
utes, we issue forward traceroutes from 175 geographically dis-
tributed PlanetLab sites toward the monitored prefixes. Forward
traceroutes allow us to find paths from ASes not present in route
collector feeds, but are still limited to the locations where Planet-
Lab nodes are located.

Reverse Traceroute [16] allows us to address this by potentially
measuring paths to monitored prefixes from routers in arbitrary
ASes. In particular, we use Reverse Traceroute to measure paths
from three IPs in each AS on the BGP feeds and forward traceroutes
toward the monitored prefixes. We refresh reverse traceroutes every
15 minutes. For a variety of reasons (e.g., routers not responding to
IP Options probes), Reverse Traceroute may not be able to collect
measurements from all ASes.

Combining Data Sources. In some cases, we obtain a path be-
tween two ASes using both traceroute measurements and BGP feeds.
Because IP-to-AS mappings can be inaccurate [3,27], PoiRoot uses

the control-plane paths from BGP feeds instead of data-plane paths
in this case.

4.4 Identifying the Set of ASes to Monitor
PoiRoot identifies the set of ASes whose paths we need to mon-

itor to run root cause analysis,
⋃

T (v), while in monitoring mode.
We consider the following data sources.

Passive Monitoring of Paths to Prefixes. One way to identify the
ASes in the monitored set T (v) is to continuously monitor public
BGP feeds [28]. Monitoring changes for a prolonged period of time
allows us to discover a set of paths an AS may use to reach a prefix
and build the set of ASes we need to monitor to perform root cause
analysis. Although a passive approach reveals actual paths used in
the Internet and is minimally invasive, not all paths appear in BGP
feeds because ASes only propagate their best path, apply export
filters, and perform prefix aggregation. Waiting for path changes
to take place naturally is likely to be slow (on the order of months
or years [30]) for the purposes of identifying the ASes we need to
monitor.

Active Monitoring of Paths to Prefixes. We complement passive
BGP data with active periodic traceroute measurements. We store
all paths observed with passive and active monitoring and build a
database of historical paths toward the monitored prefixes.

Revealing Alternative Paths via BGP Announcements. PoiRoot
reveals alternative paths in the Internet using the Transit Portal plat-
form [40], which lets us announce prefixes using five different US
universities as our providers (University of Washington, University
of Wisconsin, Georgia Tech, Princeton University, and Clemson
University). Suppose AS v has AS x in its path toward a prefix
we control in AS s. To reveal an alternative path from v to s that
does not traverse x, we can prepend our BGP announcements with
[s, x, s]. This approach is generally referred to as “BGP poison-
ing” [1, 5, 18].3

When a poisoned update for our prefix arrives at x, BGP’s loop-
prevention mechanism causes x to discard the route, leaving it route-
less. AS x then withdraws its path to our prefix from its upstream
neighbors (including v), forcing them to choose new paths. For
example, in Fig. 2 poisoning c emulates a link failure between c
and b. This causes c to withdraw the route to b, causing b to route
through d.

To discover all possible paths to our prefixes from an AS x, we
first discover all neighbors L(x) that x can use to reach our prefix
and then call the discovery process recursively on each AS in L(x).
To discover the neighbors L(x) that an AS x can use, we first poi-
son the neighbor On(x) that x is using to reach our prefix. When x
changes to a new path, we poison its new neighbor. We repeat this
process until x has no new path to our prefix. Note that we include
multiple ASes in our announcements as the discovery process pro-
ceeds. In particular, to call the discovery process recursively on
an AS y ∈ L(x), we need to poison all other ASes in L(x) that x
prefers over y. For example, suppose our measurements go through
a provider x that has y and z as the two most preferred neighbors to
reach our prefixes. We will keep y poisoned throughout the discov-
ery of the paths z can use toward our prefixes, otherwise x would
change back to y and we will be unable to observe paths through z.

We argue that this approach to learning alternative available paths

3Similar to the study we conducted for LIFEGUARD [18], these
announcements affect only paths toward our experimental prefixes
and we impose a conservative rate limit for announcements to en-
sure our experiments do not generate unduly large numbers of up-
dates. We gave operators an opportunity to opt out. We have re-
ceived zero complaints during several months of experiments.



is reasonable for the context of a large cloud provider or ISP. Such
networks already are BGP speakers, and we expect they can dedi-
cate a small prefix (e.g., a /24) for the purposes of exploring alter-
nate paths and inferring route preferences of different ISPs routing
towards them.

Path Preference Estimation. We use the order in which x chooses
neighbors in the path discovery procedure above to rank paths by
preference. When the discovery procedure provides insufficient in-
formation to estimate preference, we use path usage time as in in-
dicative of preference as proposed by Oliveira et al. [31].

4.5 Root Cause Analysis Algorithm
The root cause analysis algorithm in Alg. 1 requires complete

and accurate information. PoiRoot uses a modified version, shown
in Alg. 2, that is more robust to missing and inconsistent mea-
surements. Because it is impossible to determine whether an AS
changed its export policy without BGP feeds from its neighbors,
we assume that ASes do not change their export policy (i.e., unless
an AS changes its path, it will not change whether or not it is ex-
porting the path to a neighbor). If an AS changes its export policy
in practice, our system will blame the root cause’s upstream. We
believe this case is uncommon. Further, this information is useful
in that the upstream AS is the only one that could detect the change
in export policy, information necessary to debug the path change.

We now describe how our practical root cause analysis algorithm
works. Suppose a path change happens on the path from an AS v
to another AS s that originates a prefix. The algorithm adds the
ASes in O(v) and N(v) to the suspect set S. At each step, the
algorithm visits the unvisited AS x in the suspect set that is closest
to v (ties can be broken arbitrarily). If a measurement from x is
missing (lines 3–4), the algorithm uses several heuristics to resolve
uncertainty, described in §4.6. If the visited AS x did not change
paths, then x cannot be the root cause and we remove x and all
downstream ASes from the suspect set (local change, lines 5–7). If
x changed paths, we know that either it is the root cause or the root
cause is downstream of x (neighbor path change or downstream
change). We remove all ASes upstream of x from the suspect set
(line 9). If x is in O(v) or N(v), then we add any new ASes down-
stream of x to the suspect set and visit them to determine whether
they are the root cause of the path change. Note that this algo-
rithm has no recursive call and that lines 11 and 13 only execute if
x ∈ O(v) or x ∈ N(v). Only ASes in N(O(v)) ∪ O(N(v)) may
be added to the suspect set. The algorithm finishes when all ASes
in the suspect set have been visited.

Our algorithm will misidentify the root cause if our simplified
routing model is wrong; i.e., the root cause AS is not in N(O(v))∪
O(N(v)). Say Alg. 2 identified x as the root cause. We can
check for violations of the model (and misidentifications) by ex-
tending Alg. 2 to check if another downstream AS in O(x)∪N(x)
changed paths. Our algorithm further assumes there is a unique
path change when performing root cause analysis. For concur-
rent changes where the root causes are in one AS (or at an AS-AS
boundary), PoiRoot will correctly identify the AS responsible. Poi-
Root is equally effective when concurrent changes affect disjoint
sets of paths. The case of distant, unrelated concurrent changes
may lead to misidentifications (e.g., identifying multiple, incorrect
root causes).

4.6 Dealing with Uncertainty
Alg. 2 can find the root cause of a path change using a small

subset of all monitored ASes in T (v). However, some path mea-
surements might be unavailable. In particular, measurements for
the new path of an AS x ∈ O(v) may be unavailable because no

Algorithm 2 Practical algorithm for root cause analysis of a change
on the path from v to s with potentially incomplete information.
PracticalRootCause(v, s):
1 S ← O(v) ∪N(v)
2 for each unvisited x ∈ S in order of distance from v:
3 if O(x) not found or N(x) not found:
4 // resolve uncertainty (§4.6)
5 if O(x) = N(x):
6 remove x from S
7 remove ASes downstream of x from S
8 else:
9 remove ASes upstream of x from S
10 if x ∈ O(v):
11 add ASes in N(x)−O(x) to S
12 else if x ∈ N(v):
13 add ASes in O(x)−N(x) to S
14 return S

vantage point has a path that traverses x after the change. Simi-
larly, measurements for the old path of an AS y ∈ N(v) may be
missing. We employ the following heuristics to deal with missing
measurements in Alg. 2.

FailedPath. If AS x experiences an outage, i.e., O(x) 6= N(x)
and N(x) = ∅, then the root cause is downstream of x and all ASes
upstream of x cannot be the root cause (local change or neighbor
path change) and we remove ASes upstream of x from the suspect
set. Similarly, FailedPath removes x’s upstream ASes in the case
of a link restoration, i.e., N(x) 6= O(x) = ∅. We keep track of
reachability from ASes using pings to historically reachable routers
inside ASes.

MissingPath. If a path from AS x is unavailable and x is reach-
able, we use information from our atlas of historical paths (§4.4)
to predict the missing path. When either O(x) or N(x) is missing,
MissingPath adds all ASes in x’s bounded monitored set, T (x),
to the suspect set, as these are the ASes that x is most likely to be
using after the change.

Correlation. When Alg. 2 runs and encounters missing measure-
ments, the resulting candidate sets may contain more than one AS.
Because routing is generally destination-based, the same root cause
can appear in multiple paths from vantage points toward the mon-
itored prefix. We use this observation to reduce the suspect set by
correlating suspect sets across path changes from the same event
observed at different vantage points.

Note that the candidate sets from different vantage points may be
disjoint for two reasons. First, our information about routing pref-
erences for each AS in the candidate set may be incorrect (e.g., be-
cause it is stale) leading the system to monitor the wrong set T (v)
of ASes. Second, there may be multiple concurrent and indepen-
dent path changes. Thus, taking the intersection of suspect sets, as
done by Feldmann et al. [9], would filter out a potential root cause.

To avoid this, we compute the suspect set for each path change
resulting from a network event, then count the number of occur-
rences of each suspect AS over all suspect sets. Then, each suspect
set is pruned to only those ASes with the highest number of occur-
rences.

5. EVALUATION
In this section, we evaluate PoiRoot’s algorithm on a large set

of path changes. Our evaluation goals are to demonstrate that our
approach is 1) accurate in terms of always including the root cause
in the suspect set; 2) precise in that it identifies a small suspect set
(ideally of size one); 3) robust to missing measurement from van-



tage points; and 4) scalable in that it does not require monitoring a
prohibitive number of paths and it can identify root causes within
minutes of paths changing. To evaluate these goals, we use con-
trolled path changes on real Internet paths, simulations for larger
topologies, and path changes “in the wild.” In contrast to previous
work, our approach is both precise and accurate, largely because
it accounts for induced path changes. Further, we show that our
results are similar even with only partial information from paths in
the monitoring set for a prefix.

5.1 Controlled Internet Experiments
In this section, we use controlled experiments on real Internet

paths to demonstrate the accuracy and precision of PoiRoot for
identifying the root cause of a path change. We begin by describ-
ing our experiment methodology, then present a case study of how
our algorithm works on a real induced path change. Last, we use a
large set of AS-link failures to evaluate our approach and compare
it with NOOR [9].

5.1.1 Methodology
A key challenge for evaluating root cause analysis algorithms is

the lack of control or ground truth for interdomain path changes.
Our work addresses this using the Transit Portal (TP) platform [40]
to craft announcements that cause controllable path changes for real
Internet paths. Specifically, we use BGP poisoning [1] to induce
changes for paths toward a prefix we control.4 Because such an-
nouncements cause the targeted AS to withdraw routes from its
upstream neighbors, we know that the “root cause” for the corre-
sponding path change is the targeted AS. Likewise, when unpoi-
soning a prefix, we effectively emulate a “link up” event for the
targeted AS.

We use five /24 poisoning prefixes to cause path changes. Each
prefix is announced from one of the five TP sites: University of
Washington, University of Wisconsin, Georgia Tech, Princeton Uni-
versity, and Clemson University. We perform a sequence of poi-
sonings using the same topology discovery scheme described in
§4.4, starting the discovery process from the ASes where we have
a PlanetLab vantage point. We change announcements (add or re-
move poisonings) at most once every 90 minutes to allow for BGP
convergence and to avoid flap dampening effects. In addition to
changes caused by our poisoned announcements, paths may change
in response to exogenous events. To account for this, we announce
a separate sentinel /24 prefix from each TP site and do not vary its
AS-Path. If the sentinel and poisoning prefixes change at the same
time, then it is likely caused by an exogenous event and we filter
the change from our dataset.

We let the experiment run for one week starting November 25th,
2012, yielding a total of 105 distinct poisonings for each prefix.
The BGP updates and traceroutes collected throughout the experi-
ment traverse 351 ASes and include 2572 path changes. Many of
these path changes are duplicates, and are therefore ignored. Sim-
ilarly, we also ignore experiments where we detect that one of the
poisoned AS’s peers filtered the poisoned announcement. After ap-
plying the filters, our experiments yield 638 unique path changes.

5.1.2 Induced Path Change Case Study
We begin by describing how PoiRoot locates the root cause AS

for an induced path change via a case study. Note that since the
root cause AS lies neither on the old nor the new path, NOOR
will not be able to find it. The path change takes place between

4We use the same conservative approach to poisoning as described
in §4.4.

NTU

TANET2
old path
new path

Ø
ASNETAPAN

TRANSPACI2

TP

UWisc

Figure 4: Case study for an induced path change. The path
change is caused by a poisoned announcement that emulates a
link failure at TRANSPAC (AS: 22388).

Step Visit Suspect Set
1 TANET2 NTU, TANET2, I2, ASNET, APAN
2 ASNET NTU, ASNET, APAN
3 APAN APAN, TRANSPAC, ASNET
4 TRANSPAC TRANSPAC, APAN
5 ∅ TRANSPAC

Table 2: Illustration of the suspect set when recursing through
Alg. 2 for the induced path change shown in Fig. 4.

the National Taiwan University (NTU, ASN: 17716) and our ex-
perimental AS (ASN: 47065). We used TP to announce prefix
184.164.249.0/24 from the University of Wisconsin (ASN: 2381)
and poisoned TRANSPAC (ASN: 22388) at 2:22 AM PST on Novem-
ber 27th, 2012. After convergence a path change was observed at
a PlanetLab node located in NTU at 2:35 AM. The AS-level path
change is shown in Fig. 4.

Upon observing the path change at NTU, PoiRoot runs Alg. 2
to identify the root cause. It begins by adding ASes in NTU’s old
and new paths to the suspect set. Then, it searches for the root
cause in order of distance from NTU. It first checks that TANET2
uses the same path before and after the change, so TANET2 and
all its downstream ASes cannot be the root cause of the change
(local change, lines 5–7). We illustrate the algorithm in Tab. 2,
where each row shows the AS being currently visited and the sus-
pect set from the previous step. For lack of space, we do not
show the TP AS and UWisc, which are trivially eliminated as root
causes. When PoiRoot visits ASNET, it (i) removes NTU from the
suspect set because ASNET changed paths (line 9), and (ii) adds
TRANSPAC from ASNET’s old path to the suspect set (line 13).
Similarly when it visits APAN, it removes ASNET from the sus-
pect set since APAN experienced a path change. Finally, the algo-
rithm visits TRANSPAC and removes APAN from the suspect set
(because TRANSPAC changed paths) and terminates returning a
suspect set containing only TRANSPAC, the correct root cause. To
validate our approach for obtaining ground truth via poisoning, we
confirmed with TRANSPAC’s NOC that it withdrew its announce-
ment for our prefix.

5.1.3 Controlled Internet Experiments
In this section, we use controlled experiments to show that Poi-

Root is accurate (always includes the root cause), precise (identi-
fies suspect sets of size 2 or smaller 96% of the time) and robust to
missing path information (more than 50% of paths must be missing
to significantly impact suspect set size). By comparison, previous
work cannot be both accurate and precise in the face of induced
path changes, which occur frequently. Further, we show that our
approach is scalable in that it monitors only a reasonable number
of paths and provides results within minutes of path changes.

Accuracy and Precision. We use the path changes collected in the



accuracy of suspect set suspect set size when accurate

ground truth in set empty inaccurate mean median 25th perc. 75th perc.

PoiRoot 100.0% 0.0% 0.0% 1.66 1 1 2
PoiRoot-correlation across VPs 100.0% 0.0% 0.0% 1.32 1 1 1
NOOR-standard 61.7% 38.3% 0.0% 1.20 1 1 1
NOOR-individualPath 91.1% 0.0% 8.9% 2.70 2 1 3

Table 3: Comparison of PoiRoot with NOOR, the approach used in previous work [9]. PoiRoot is both accurate and precise: it
never misses the root cause and nearly always produces a suspect set size of two or smaller. NOOR trades off precision for accuracy
in the face of induced path changes: NOOR-standard misses the root cause in many cases but has small suspect set sizes; NOOR-
individualPath misses fewer root causes but exhibits larger suspect set sizes.
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Figure 5: CDFs of the size of the final suspect set. PoiRoot, com-
bined with an optimization that correlates the results across
sources, results in a small suspect set on average as well as high
accuracy.

previous section to evaluate PoiRoot. Tab. 3 presents our results and
compares them with NOOR, which we discuss in the next section.

The table shows the fraction of paths where the suspect set (i)
contains the ground truth (i.e., the poisoned or unpoisoned AS),
(ii) is empty, and (iii) is nonempty but does not contain the ground
truth. We also show the mean and the quartiles of the suspect set
size for correctly identified changes.

PoiRoot always includes the root cause in the suspect set, the av-
erage suspect set size is 1.66 ASes, and the median size is 1 AS.
When PoiRoot identifies a suspect set of size 2, the ASes are ad-
jacent, meaning the algorithm still isolates the root cause to the
endpoints of an AS link. The median of the maximum candidate
set size observed during executions of Alg. 2 is 5, and the quartiles
are 4 and 6, respectively.

PoiRoot may return a suspect set with more than one AS when
we have incomplete path information from some ASes. To reduce
the impact of this issue we use the Correlation heuristic described
in §4.6. Fig. 5 compares Correlation’s performance with the stan-
dard version of PoiRoot. For the standard algorithm, the suspect
set contains one AS for 51% and two ASes for 84% of the path
changes. Correlation across vantage points improves suspect set
size: it is a single AS for 73%, and two ASes for more than 95%
of the path changes. Again, in all cases of suspect sets larger than
one, the ASes lie adjacent to each other on a path. The remainder
of the evaluation uses Correlation.

Comparison with NOOR. We now compare our results with those
from using NOOR, which is based on the approach proposed by
Feldmann et al. [9].

The standard NOOR algorithm (see §2) builds a suspect set that

contains the root cause for only 61.7% of the path changes, but
with an average suspect set size smaller than that of our algorithm.
This suggests an inclusion policy that is too conservative and an
elimination policy that is too aggressive. We now detail the reasons
behind these issues.

A key reason for inaccuracy is that the standard NOOR algorithm
may output an empty set when an induced path change is observed.
For example, when AS x causes an induced path change at another
AS y, x may be identified as the root cause when considering paths
from x, but it does not appear on the new or old paths used by AS y.
Because the suspect sets from x and y may not overlap, the inter-
section may produce an empty set. The impact of this limitation
is significant: in our experiments, 38.3% of the path changes were
due to an event that generated an induced change.

The existence of even a small number of induced path changes
can significantly decrease NOOR’s accuracy. In fact, a larger set of
available vantage points leads to a higher probability that at least
one induced change will be observed for a network event. Out of
the 292 RouteViews peers and PlanetLab nodes used in our system,
15.8% observed at least one induced path change over the course
of the experiment.

One way to address the induced path change problem is to mod-
ify the standard NOOR algorithm so that every path change is treated
on an individual basis instead of grouping all changes for an event
(NOOR-individualPath). This approach avoids taking the intersec-
tion of the individual candidate sets. It still fails to deal with an
induced change due to the assumption that the root cause lies on
either the old or new path. However, it improves results for non-
induced changes, increasing accuracy to 91.1%. This comes at the
cost of precision: the elimination policy is less aggressive without
correlation, so the median and mean suspect set size for correct
identification is larger (2 and 2.7, respectively). This highlights a
key limitation of NOOR: the algorithm is either precise but not ac-
curate; or in this case, accurate but not precise.

Robustness to Missing Information. We now address the ques-
tion of whether PoiRoot is robust to missing path information. Note
that PoiRoot always includes the root cause in our suspect set un-
less a new path from a monitored AS a uses an AS b that never
appeared in previous measurements. This case never occurred in
our experiments. Thus we quantify the robustness of our approach
by evaluating the precision of PoiRoot when previously available
paths are removed from the dataset.

In particular, consider AS x in our suspect set first discovered on
the old path originating from AS v, hence O(x) is known. Now our
system measures N(x). To determine how PoiRoot would perform
with missing information, we set N(x) = missing with prob-
ability p. Similarly if x were originally discovered on the new
path from v, i.e., N(x) is known, we set O(x) = missing with
probability p. Increasing p causes PoiRoot to use the MissingPath
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Figure 6: Mean suspect set size (and standard deviation) as we
vary the probability of a missing path from an AS. PoiRoot is
reasonably robust to missing path information: on average the
suspect set size is only 2 when 70% of paths are missing.

heuristic (from §4.6) more frequently; this in turn can increase the
suspect set size.

In Fig. 6 we plot the average suspect set sizes (and standard de-
viations) as we vary p. For each value of p, 0 ≤ p < 1 we run the
algorithm ten times on each path change and take the average sus-
pect size. The final average for p is taken over all these averages.
We note that the mean suspect set size increases slowly as p is in-
creased. In fact the mean suspect size is less than 2 for a missing
probability as large as 0.7.

PoiRoot is robust to missing measurements because paths from
multiple vantage points tend to overlap as they converge toward the
destination prefix. A single path measurement can remove multiple
ASes from the suspect set, even ASes added to the suspect set due
to missing measurements. For example, if PoiRoot observes a local
change or a neighbor path change at an AS x (§3.1), i.e., O(x) 6=
N(x), all ASes upstream from x are removed since they cannot be
the root cause.

Prevalence of Induced Path Changes. One of the key strengths
of PoiRoot is its success in dealing with induced path changes.
We showed earlier that even a small number of induced changes
can significantly decrease the effectiveness of previous approaches,
such as NOOR. Now using a combination of our measurement data
and the UCLA Internet graph [39], we argue that a larger set of
vantage points would lead to significantly more observations of in-
duced changes than in our controlled setting.

To simulate the scenario where we have more vantage points,
and thus more paths, available to PoiRoot, we extend the empiri-
cally derived AS topology used in the previous section. Specifi-
cally, for each AS x in our measured paths, we find its set of up-
stream neighbors from the UCLA Internet graph. We use the cor-
responding annotated business relationships to determine whether
these neighbors are upstream. Then, for each upstream neighbor
u, we calculate the shortest valley-free path from the neighbor to-
ward a TP prefix. AS u will use this path only if it is shorter than
the path exported by x. We use path changes from our poisonings
to determine which ASes x choose a longer path over a short one.
These ASes may cause an induced change at an upstream AS u if a
failure occurs on x’s old path and x selects a new shorter path, i.e.,
N(x) < O(x). This is identical to the example in Fig. 1, where y
chooses a longer path and induces changes at v.

We find 302 cases where AS x prefers a longer BGP path. This
leads to a total of 7555 induced path changes caused by just 55
simulated link failures. Hence with a larger set of paths being mon-
itored, the number of induced path changes increases. Therefore an
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Figure 7: Our bound on the candidate set size allows us to re-
duce the number of ASes we have to monitor to perform root
cause analysis.

approach that does not account for induced changes is more likely
to be inaccurate as the number of vantage points increases.

We also run PoiRoot on this set of simulated induced path changes.
PoiRoot continues to always include the root cause in its suspect
set; the suspect set contains only the failed AS. We also model
missing paths with the parameter p similar to Fig. 6. The results
are similar to Fig. 6. For example, p = 0.7 results in a mean sus-
pect size of 1.65.

Candidate and Monitored Set Bounds. We now quantify the
scalability gains obtained with our bound on the candidate set. We
compute the sizes of the general and bounded candidate sets C(v)
and B(v) for all path changes in our poisoning experiments and
also the sizes of the general and bounded monitored sets M(v) and
T (v). We use exhaustive poisoning experiments—we need topol-
ogy information as complete as possible to compute the general
candidate and monitored sets C(v) and M(v)

The further an AS is from the origin AS (i.e., our TP providers),
the longer its paths and the larger its candidate and monitored sets.
We compute candidate and monitored sets for the ASes where we
have vantage points because they are the furthest from the origin
AS in our dataset. We also note that the bounded candidate and
monitored sets B(v) and T (v) depend on v’s old path O(v); in
particular, the size of T (v) depends heavily on the preference rank
of its old path. The general candidate and monitored sets C(v) and
M(v) are independent of O(v).

The solid line in Fig. 7 shows the distribution of the reduction
in monitored set size (i.e., |M(v) − T (v)| ÷ |M(v)|) across all
path changes in the data set. Overall, we reduce the monitored set
size by more than 50% for 38% of path changes. The average size
of the general and bounded monitored sets are E[M(v)] = 38.9
and E[T (v)] = 27.0, and the average reduction in size is 31%.
The bounded monitored set is identical to the general monitored
set for 38% of the path changes (where the solid line intersects the
y-axis). This happens whenever an AS is using its least preferred
path, as we have to monitor all other paths that are more preferred.
Even if an AS is not using its least preferred path, the set of ASes
to monitor quickly converges to the general monitored set as the
number of more preferred paths we need to monitor increases.

The dashed line in Fig. 7 shows the reduction in monitored set
size across the subset of path changes when an AS v changes from
its most preferred path to an arbitrarily less preferable path. Be-
cause we only need to monitor a few less preferred paths when v is
using its most preferred path, the reduction in monitored set size is
significantly higher. The average reduction in this case is 65%.



The reduction in candidate set sizes (i.e., |C(v)−B(v)|÷|C(v)|)
is much smaller (not shown), as induced path changes are rare in
practice and we do not observe any 3-level induced path changes.

Detection Speed. To allow providers and operators to debug prob-
lems caused by path changes in real time, we would like PoiRoot to
provide root cause analysis as changes occur. Our current system
refreshes paths from traceroutes every 10 minutes and from BGP
feeds every 15 minutes. The algorithm for generating the suspect
set takes seconds to run, so our system currently can provide re-
sults at the same rate that paths are refreshed (i.e., 15 minutes or
less). We note that we can further reduce detection time by moni-
toring real-time BGP feeds (e.g., via BGPMon [42]) and triggering
path measurements on demand in response to issues such as perfor-
mance problems.

5.2 In the Wild Path Changes
Having shown that our approach is accurate and precise for path

changes obtained by controlled BGP poisonings and simulations,
we now demonstrate its effectiveness for path changes seen “in the
wild.” In particular, we focus on path changes that significantly
worsen end-to-end latency, as they are most likely to warrant fur-
ther debugging from service providers and operators that optimize
for performance.

5.2.1 Methodology
We identify path changes as follows. We issued traceroutes be-

tween all PlanetLab sites every ten minutes for a period of three
days starting November 1st, 2012, and perform IP-to-AS transla-
tion to convert traceroutes to AS-level paths. We extract from this
dataset AS-path changes that last for at least an hour. In addition
we require that the path before the change is stable for at least 30
minutes to allow for convergence.

Since network operators will be most interested in further inves-
tigating those path changes that degrade performance significantly,
we use the relative change in RTT as our performance metric and
consider only those path changes that experience an increase in
RTT larger than 10ms and whose relative increase in RTT is greater
than 25%. Each RTT value is averaged over at least three samples.
This gives us a set of 643 path changes for the three day period.

5.2.2 Results
Fig. 8 shows the distribution of the size of the suspect set built by

PoiRoot with the Correlation heuristic for the path changes iden-
tified above, as well as the corresponding distribution from con-
trolled experiments §5.1.3. The results are similar: the suspect set
size is one AS for more than 64%, and to two ASes for more than
83% of the path changes. We find that 96% of the suspect sets with
more than one AS include a sequence of consecutive ASes (i.e.,
ASes are adjacent).

6. RELATED WORK
Measuring path changes. Several previous studies have intro-
duced new path measurement techniques [7, 16, 17, 24, 31, 34, 43],
e.g., to discover inter-AS links, quantify BGP path exploration, or
infer an AS’s path preferences. Our system combines multiple
sources of data to collect Internet path measurements, including
public BGP feeds [28] and traceroute measurements collected from
PlanetLab. Previous work has used BGP poisoning to quantify the
use of default routes in the Internet [1]. We use BGP poisoning
to perform topology discovery in a way equivalent to that of Col-
itti et al. [5]. However, ours is the first work we are aware of that
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Figure 8: Distribution of suspect set sizes built by PoiRoot run-
ning on path changes observed “in the wild”. The correspond-
ing CDF from §5.1.3 is shown as well. Our algorithm identifies
the root cause as being one or two ASes for more than 84% of
the cases.

uses BGP poisoning to obtain ground truth for evaluating root cause
analysis in the Internet.

Impact of path changes. Several previous studies highlight the
impact of route changes [8, 15, 20, 25, 26], e.g., causing increased
delays and transient packet loss due to convergence, in addition
to outages due to misconfiguration. In this work, we identify the
root cause of such pathological changes, which can assist in de-
bugging and correcting the problem. Previous work also studied
how paths propagate in the Internet [12,13]. Our work uses a basic
routing model to understand how interdomain path changes propa-
gate, building on previous work that models the BGP decision pro-
cess [10].

Root cause analysis. As described in §2, the work by Feldmann
et al. [9] and Caesar et al. [2] are most closely related to ours. We
demonstrated that the NOOR assumption prevents their approaches
from achieving both accuracy and precision. Several other pa-
pers have looked at the problem of root cause analysis from dif-
ferent perspectives. Wu et al. [41] propose a system to identify
high-impact network events affecting an AS, using routing changes
observed at an AS’s border routers and correlating it with traffic
changes. The system helps operators identify important events, but
is limited to one network and cannot identify the cause of events.
In particular, if an event is caused by a distant AS, their system
can only indicate the border routers involved. Pei et al. [32] pro-
pose a modification to BGP that includes information about the net-
works responsible for a path change. Our work demonstrates that
one can identify root causes without requiring protocol modifica-
tion. LIFEGUARD [18] and NetDiagnoser [6] identified a set of
routers responsible for packet-forwarding outages, but did not fo-
cus on which network’s path change (if any) caused the outage.

7. CONCLUSION
In this paper, we described an algorithm and a scalable system,

PoiRoot, for accurately and precisely identifying the network re-
sponsible for Internet path changes, even in the face of induced
path changes and incomplete information. We developed a general
algorithm for identifying the root cause of path changes, then used
simple, validated assumptions about routing behavior to derive new
constraints on the networks that can possibly be responsible for a
path change. We then designed a system to gather the requisite path
information and produced an algorithm that identifies the root cause
of a path change even with missing measurements. Finally, we



evaluated PoiRoot using ground truth from path changes induced
on real Internet paths, empirically informed simulations and natu-
ral path changes “in the wild.” We showed that previous approaches
to root cause analysis can either be accurate or precise, while our
approach achieves both. As part of our future work, we are inves-
tigating ways to use this root cause information to automatically
address routing changes that negatively impact performance.
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